Integer partitions

Let L denote the positive octant of the regular d-dimensional cubic lattice. The summands in the d-partition are thus nonincreasing in each of the d lattice directions. We agree to suppress all zero labels. A 1-partition is the same as an ordinary partition; a 2-partition is often called a plane partition and a 3-partition is often called a solid partition. Three sample plane partitions of n = 26 are ⎛ ⎜ ⎝ 8 9 9

[1]  G. Hardy,et al.  Asymptotic formulae in combinatory analysis , 1918 .

[2]  Hans Rademacher A Convergent Series for the Partition Function p(n). , 1937, Proceedings of the National Academy of Sciences of the United States of America.

[3]  On the Hardy-Ramanujan Series for the Partition Function , 1937 .

[4]  On the series for the partition function , 1938 .

[5]  Hans Rademacher,et al.  On the Partition Function p(n) , 1938 .

[6]  D. H. Lehmer On the remainders and convergence of the series for the partition function , 1939 .

[7]  Hans Rademacher,et al.  On the Expansion of the Partition Function in a Series , 1943 .

[8]  John McKay,et al.  Some computations for m-dimensional partitions , 1967, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  L. Houten A note on solid partitions , 1968 .

[10]  Numerical Investigation of Certain Asymptotic Results in the Theory of Partitions , 1972 .

[11]  T. Apostol Modular Functions and Dirichlet Series in Number Theory , 1976 .

[12]  G. Hardy,et al.  Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work , 1978 .

[13]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[14]  Marvin I. Knopp,et al.  A Tribute to Emil Grosswald: Number Theory and Related Analysis , 1993 .

[15]  Charles Knessl Asymptotic behavior of high-order differences of the plane partition function , 1994, Discret. Math..

[16]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[17]  Gert Almkvist,et al.  On the Coefficients in the Hardy-Ramanujan-Rademacher Formula for p(n) , 1995 .

[18]  F. Y. Wu,et al.  THE INFINITE-STATE POTTS MODEL AND SOLID PARTITIONS OF AN INTEGER , 1997 .

[19]  The infinite-state potts model and restricted multidimensional partitions of an integer , 1997 .

[20]  Gert Almkvist Asymptotic Formulas and Generalized Dedekind Sums , 1998, Exp. Math..

[21]  The partition function for , 1999 .

[22]  W. Pribitkin Revisiting Rademacher's Formula for the Partition Function p(n , 2000 .

[23]  Applications of the Wulff construction to the number theory , 2001, math-ph/0109027.

[24]  Numerical estimation of the asymptotic behaviour of solid partitions of an integer , 2003, cond-mat/0303607.

[25]  On the Asymptotic Formula for the Number of Plane Partitions of Positive Integers , 2006, math/0601253.

[26]  R. Ayoub An Introduction to the Analytic Theory of Numbers , 2006 .

[27]  S. Govindarajan,et al.  On the asymptotics of higher dimensional partitions , 2011, 1105.6231.

[28]  S. Govindarajan,et al.  A superasymptotic formula for the number of plane partitions , 2013, 1311.7227.

[29]  N. Destainville,et al.  Estimating the Asymptotics of Solid Partitions , 2014, 1406.5605.