Characteristic Sets of Fixed-Dimension Vector Linear Codes for Non-Multicast Networks

Vector linear solvability of non-multicast networks depends upon both the characteristic of the finite field and the dimension of the vector linear network code. In the literature, the dependency on the characteristic of the finite field and the dependency on the dimension have been studied separately. In this paper, we show the interdependency between the characteristic of the finite field and the dimension of the vector linear network code that achieves a vector linear network coding (VLNC) solution in non-multicast networks. For any given network <inline-formula> <tex-math notation="LaTeX">$\mathcal {N}$ </tex-math></inline-formula>, we define <inline-formula> <tex-math notation="LaTeX">$P(\mathcal {N},d)$ </tex-math></inline-formula> as the set of all characteristics of finite fields over which the network <inline-formula> <tex-math notation="LaTeX">$\mathcal {N}$ </tex-math></inline-formula> has a <inline-formula> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula>-dimensional VLNC solution. To the best of our knowledge, for any network <inline-formula> <tex-math notation="LaTeX">$\mathcal {N}$ </tex-math></inline-formula> shown in the literature, if <inline-formula> <tex-math notation="LaTeX">$P(\mathcal {N},1)$ </tex-math></inline-formula> is non-empty, then <inline-formula> <tex-math notation="LaTeX">$P(\mathcal {N},1) = P(\mathcal {N},d)$ </tex-math></inline-formula> for any positive integer <inline-formula> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula>. We show that, for any two non-empty sets of primes <inline-formula> <tex-math notation="LaTeX">$P_{1}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$P_{2}$ </tex-math></inline-formula>, there exists a network <inline-formula> <tex-math notation="LaTeX">$\mathcal {N}$ </tex-math></inline-formula> such that <inline-formula> <tex-math notation="LaTeX">$P(\mathcal {N},1) = P_{1}$ </tex-math></inline-formula>, but <inline-formula> <tex-math notation="LaTeX">$P(\mathcal {N},2) = \{P_{1},P_{2} \}$ </tex-math></inline-formula>. We also show that there are networks exhibiting a similar advantage (the existence of a VLNC solution over a larger set of characteristics) if the dimension is increased from 2 to 3. However, such behaviour is not universal, as there exist networks which admit a VLNC solution over a smaller set of characteristics of finite fields when the dimension is increased. Using the networks constructed in this paper, we further demonstrate that: (i) a network having an <inline-formula> <tex-math notation="LaTeX">$m_{1}$ </tex-math></inline-formula>-dimensional VLNC solution over a finite field of some characteristic and an <inline-formula> <tex-math notation="LaTeX">$m_{2}$ </tex-math></inline-formula>-dimensional VLNC solution over a finite field of some other characteristic may not have an <inline-formula> <tex-math notation="LaTeX">$(m_{1} + m_{2})$ </tex-math></inline-formula>-dimensional VLNC solution over any finite field; (ii) there exist a class of networks for which scalar linear network coding (SLNC) over non-commutative rings has some advantage over SLNC over finite fields: the least sized non-commutative ring over which each network in the class has an SLNC solution is significantly lesser in size than the least sized finite field over which it has an SLNC solution.

[1]  Shuo-Yen Robert Li,et al.  Network Coding Theory Via Commutative Algebra , 2009, IEEE Transactions on Information Theory.

[2]  Kenneth Zeger,et al.  Linear Network Coding Over Rings – Part II: Vector Codes and Non-Commutative Alphabets , 2016, IEEE Transactions on Information Theory.

[3]  Brijesh Kumar Rai,et al.  On Network Coding for Sum-Networks , 2009, IEEE Transactions on Information Theory.

[4]  B. Sundar Rajan,et al.  Linear Network Coding, Linear Index Coding and Representable Discrete Polymatroids , 2013, IEEE Transactions on Information Theory.

[5]  Zongpeng Li,et al.  On Base Field of Linear Network Coding , 2016, IEEE Transactions on Information Theory.

[6]  Christina Fragouli,et al.  Algebraic Algorithms for Vector Network Coding , 2011, IEEE Transactions on Information Theory.

[7]  Randall Dougherty,et al.  Insufficiency of linear coding in network information flow , 2005, IEEE Transactions on Information Theory.

[8]  Kenneth Zeger,et al.  A Class of Non-Linearly Solvable Networks , 2017, IEEE Transactions on Information Theory.

[9]  Randall Dougherty,et al.  Linear Network Codes and Systems of Polynomial Equations , 2008, IEEE Transactions on Information Theory.

[10]  Zongpeng Li,et al.  Multicast Network Coding and Field Sizes , 2014, IEEE Transactions on Information Theory.

[11]  Kenneth Zeger,et al.  Linear Network Coding Over Rings – Part I: Scalar Codes and Commutative Alphabets , 2016, IEEE Transactions on Information Theory.

[12]  Brijesh Kumar Rai,et al.  On the Message Dimensions of Vector Linearly Solvable Networks , 2016, IEEE Communications Letters.

[13]  Peter Sanders,et al.  Polynomial time algorithms for multicast network code construction , 2005, IEEE Transactions on Information Theory.

[14]  Brijesh Kumar Rai,et al.  On the Power of Vector Linear Network Coding , 2018, 2018 International Symposium on Information Theory and Its Applications (ISITA).

[15]  Tuvi Etzion,et al.  Vector network coding based on subspace codes outperforms scalar linear network coding , 2015, 2016 IEEE International Symposium on Information Theory (ISIT).

[16]  Xunrui Yin,et al.  On vector linear solvability of multicast networks , 2015, ICC.

[17]  T. Ho,et al.  On Linear Network Coding , 2010 .

[18]  Randall Dougherty,et al.  Networks, Matroids, and Non-Shannon Information Inequalities , 2007, IEEE Transactions on Information Theory.

[19]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[20]  Brijesh Kumar Rai,et al.  Vector Linear Solution iff Dimension ≥ m , 2019, IEEE Commun. Lett..

[21]  Tracey Ho,et al.  A Random Linear Network Coding Approach to Multicast , 2006, IEEE Transactions on Information Theory.

[22]  Kenneth Zeger,et al.  Capacity and Achievable Rate Regions for Linear Network Coding Over Ring Alphabets , 2017, IEEE Transactions on Information Theory.