The Physics of Galaxy Cluster Outskirts

As the largest virialized structures in the universe, galaxy clusters continue to grow and accrete matter from the cosmic web. Due to the low gas density in the outskirts of clusters, measurements are very challenging, requiring extremely sensitive telescopes across the entire electromagnetic spectrum. Observations using X-rays, the Sunyaev–Zeldovich effect, and weak lensing and galaxy distributions from the optical band, have over the last decade helped to unravel this exciting new frontier of cluster astrophysics, where the infall and virialization of matter takes place. Here, we review the current state of the art in our observational and theoretical understanding of cluster outskirts, and discuss future prospects for exploration using newly planned and proposed observatories.

[1]  M. Sereno,et al.  On the evolution of the entropy and pressure profiles in X-ray luminous galaxy clusters at z > 0.4 , 2017, 1704.01587.

[2]  G. W. Pratt,et al.  Planck intermediate results: V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect , 2012, 1207.4061.

[3]  M. Markevitch,et al.  SLOSHING OF THE MAGNETIZED COOL GAS IN THE CORES OF GALAXY CLUSTERS , 2011, 1108.4427.

[4]  M. Meneghetti,et al.  Constraints on the Mass, Concentration, and Nonthermal Pressure Support of Six CLASH Clusters from a Joint Analysis of X-Ray, SZ, and Lensing Data , 2016, The Astrophysical Journal.

[5]  Yoshitaka Ishisaki,et al.  Super DIOS: future x-ray spectroscopic mission to search for dark baryons , 2018, Astronomical Telescopes + Instrumentation.

[6]  S. Ettori,et al.  The gas distribution in the outer regions of galaxy clusters , 2011, 1111.0020.

[7]  J. Rhodes,et al.  WEAK LENSING MEASUREMENT OF GALAXY CLUSTERS IN THE CFHTLS-WIDE SURVEY , 2011, 1108.1981.

[8]  J. A. Brevik,et al.  MUSTANG 2: A Large Focal Plane Array for the 100 m Green Bank Telescope , 2014 .

[9]  A. Lapi,et al.  ENTROPY FLATTENING, GAS CLUMPING, AND TURBULENCE IN GALAXY CLUSTERS , 2014, 1401.3097.

[10]  A. Fabian,et al.  X-ray observations of the galaxy cluster Abell 2029 to the virial radius , 2012, 1203.0486.

[11]  L. Moscardini,et al.  Gravitational lensing detection of an extremely dense environment around a galaxy cluster , 2018, Nature Astronomy.

[12]  The Intracluster Gas Fraction in X-ray Clusters : Constraints on the Clustered Mass Density , 1997, astro-ph/9701148.

[13]  T. Ohashi,et al.  X-Ray View of the Shock Front in the Merging Cluster Abell 3376 with Suzaku , 2011, 1112.5955.

[14]  S. Borgani,et al.  The Hot and Energetic Universe: The astrophysics of galaxy groups and clusters , 2013 .

[15]  Norbert Meidinger,et al.  The wide field imager instrument for Athena , 2014, Astronomical Telescopes and Instrumentation.

[16]  N. Okabe,et al.  Suzaku observations of the Hydra A cluster out to the virial radius , 2012, 1203.1700.

[17]  S. Randall,et al.  The Megaparsec-scale Gas-sloshing Spiral in the Remnant Cool Core Cluster Abell 1763 , 2018, The Astrophysical Journal.

[18]  S. White,et al.  X-ray archaeology in the coma cluster , 1993 .

[19]  Raymond E. White,et al.  SUZAKU OBSERVATIONS OF THE X-RAY BRIGHTEST FOSSIL GROUP ESO 3060170 , 2013, 1308.0283.

[20]  N. Yamasaki,et al.  Study of the Intracluster and Intergalactic Medium in the Sculptor Supercluster with Suzaku , 2010, 1009.2968.

[21]  J Korea,et al.  Cosmological Shock Waves and Their Role in the Large-Scale Structure of the Universe , 2003, astro-ph/0305164.

[22]  A. Morandi,et al.  The galaxy cluster outskirts probed by Chandra , 2015, 1501.04095.

[23]  A. Leauthaud,et al.  First results on the cluster galaxy population from the Subaru Hyper Suprime-Cam survey. II. Faint end color-magnitude diagrams and radial profiles of red and blue galaxies at $0.1 , 2017, 1709.01136.

[24]  G. Lagache,et al.  The impact of clustering and angular resolution on far-infrared and millimeter continuum observations , 2017, 1703.08795.

[25]  D. Nagai,et al.  EVOLUTION OF THE MERGER-INDUCED HYDROSTATIC MASS BIAS IN GALAXY CLUSTERS , 2011, 1112.3659.

[26]  K. Umetsu,et al.  Lensing Constraints on the Mass Profile Shape and the Splashback Radius of Galaxy Clusters , 2016, 1611.09366.

[27]  David N. Spergel,et al.  The Atacama Cosmology Telescope: The Two-season ACTPol Sunyaev–Zel’dovich Effect Selected Cluster Catalog , 2017, 1709.05600.

[28]  P. A. R. Ade,et al.  SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope , 2014, Astronomical Telescopes and Instrumentation.

[29]  Regularity in the X-ray surface brightness profiles of galaxy clusters and the M-T relation , 1999, astro-ph/9901092.

[30]  P. Ade,et al.  A multi-instrument non-parametric reconstruction of the electron pressure profile in the galaxy cluster CLJ1226.9+3332 , 2017, 1707.06113.

[31]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[32]  Jens Erler,et al.  ALMA-SZ DETECTION OF A GALAXY CLUSTER MERGER SHOCK AT HALF THE AGE OF THE UNIVERSE , 2016, 1608.05413.

[33]  M. Markevitch,et al.  SEARCHING FOR THE 3.5 keV LINE IN THE STACKED SUZAKU OBSERVATIONS OF GALAXY CLUSTERS , 2016, 1605.02034.

[34]  D. Nagai,et al.  MASS ACCRETION AND ITS EFFECTS ON THE SELF-SIMILARITY OF GAS PROFILES IN THE OUTSKIRTS OF GALAXY CLUSTERS , 2014, 1411.5361.

[35]  R. L. Kelley,et al.  DIOS: the dark baryon exploring mission , 2016, Astronomical Telescopes + Instrumentation.

[36]  A. Kravtsov,et al.  Splashback Shells of Cold Dark Matter Halos , 2016, 1612.01531.

[37]  M. Donahue,et al.  Galaxy Cluster Pressure Profiles as Determined by Sunyaev Zel’dovich Effect Observations with MUSTANG and Bolocam. II. Joint Analysis of 14 Clusters , 2015, 1608.03980.

[38]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[39]  A. Kravtsov,et al.  DEPENDENCE OF THE OUTER DENSITY PROFILES OF HALOS ON THEIR MASS ACCRETION RATE , 2014, 1401.1216.

[40]  E. Pointecouteau,et al.  Non-thermal pressure support in X-COP galaxy clusters , 2018, Astronomy & Astrophysics.

[41]  K. Umetsu,et al.  Universal profiles of the intracluster medium from Suzaku X-ray and Subaru weak-lensing observations , 2014, 1406.3451.

[42]  Alexey Vikhlinin,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS , 2008, 0812.2720.

[43]  N. Okabe,et al.  SUZAKU OBSERVATIONS OF SUBHALOS IN THE COMA CLUSTER , 2015, 1504.03044.

[44]  A. K. Inoue,et al.  The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.

[45]  L. Moscardini,et al.  Large-scale inhomogeneities of the intracluster medium: improving mass estimates using the observed azimuthal scatter , 2013, 1303.6506.

[46]  Y. Takei,et al.  Erratum: X-Ray Study of the Outer Region of Abell 2142 with Suzaku , 2011, 1106.5653.

[47]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[48]  C. L. Kuo,et al.  Integrated performance of a frequency domain multiplexing readout in the SPT-3G receiver , 2016, Astronomical Telescopes + Instrumentation.

[49]  D. Gerdes,et al.  The Splashback Feature around DES Galaxy Clusters: Galaxy Density and Weak Lensing Profiles , 2017, The Astrophysical Journal.

[50]  S. More,et al.  THE SPLASHBACK RADIUS AS A PHYSICAL HALO BOUNDARY AND THE GROWTH OF HALO MASS , 2015, 1504.05591.

[51]  Xun Shi Locations of accretion shocks around galaxy clusters and the ICM properties: insights from self-similar spherical collapse with arbitrary mass accretion rates , 2016, 1603.07183.

[52]  F. Bertoldi,et al.  The Atacama Large Aperture Submm/mm Telescope (AtLAST) Project , 2018 .

[53]  Laboratoire d'Astrophysique de Marseille,et al.  RADIAL DISTRIBUTION OF STARS, GAS, AND DUST IN SINGS GALAXIES. III. MODELING THE EVOLUTION OF THE STELLAR COMPONENT IN GALAXY DISKS , 2011, 1102.1724.

[54]  H. Hoekstra,et al.  MC2: CONSTRAINING THE DARK MATTER DISTRIBUTION OF THE VIOLENT MERGING GALAXY CLUSTER CIZA J2242.8+5301 BY PIERCING THROUGH THE MILKY WAY , 2014, 1410.2898.

[55]  Analytical model for non-thermal pressure in galaxy clusters II: Comparison with cosmological hydrodynamics simulation , 2015 .

[56]  S. Allen,et al.  Witnessing the growth of the nearest galaxy cluster , 2016, 1704.01236.

[57]  A. Fabian,et al.  Large-scale gas sloshing out to half the virial radius in the strongest cool core REXCESS galaxy cluster, RXJ2014.8-2430 , 2014, 1402.6894.

[58]  Stephen S. Murray,et al.  Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray , 2010 .

[59]  Greg L. Bryan,et al.  The baseline intracluster entropy profile from gravitational structure formation , 2005, astro-ph/0511252.

[60]  D. Nagai,et al.  STIRRED, NOT CLUMPED: EVOLUTION OF TEMPERATURE PROFILES IN THE OUTSKIRTS OF GALAXY CLUSTERS , 2016, 1605.01723.

[61]  Bristol,et al.  Further X-ray observations of the galaxy cluster PKS 0745-191 to the virial radius and beyond , 2008, 1205.2276.

[62]  A. Finoguenov,et al.  redMaPPer. I. ALGORITHM AND SDSS DR8 CATALOG , 2013, 1303.3562.

[63]  G. Lagache Continuum and Line Emission Simulation of Star-Forming Galaxies and Development of a New Sub-mm Inte , 2018 .

[64]  Harvard,et al.  Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium , 2007, astro-ph/0703661.

[65]  M. Sereno,et al.  Hydrostatic mass profiles in X-COP galaxy clusters , 2018, Astronomy & Astrophysics.

[66]  A. Finoguenov,et al.  SUZAKU OBSERVATIONS OF THE OUTSKIRTS OF A1835: DEVIATION FROM HYDROSTATIC EQUILIBRIUM , 2013, 1302.0095.

[67]  S. Foreman,et al.  CCAT-Prime: science with an ultra-widefield submillimeter observatory on Cerro Chajnantor , 2018, Astronomical Telescopes + Instrumentation.

[68]  Philip Mauskopf,et al.  Optical design of the TolTEC millimeter-wave camera , 2018, Astronomical Telescopes + Instrumentation.

[69]  Eiichiro Komatsu,et al.  Analytical model for non-thermal pressure in galaxy clusters – III. Removing the hydrostatic mass bias , 2016 .

[70]  L. Duband,et al.  The TIME-Pilot intensity mapping experiment , 2014, Astronomical Telescopes and Instrumentation.

[71]  S. More,et al.  The Halo Boundary of Galaxy Clusters in the SDSS , 2017, 1702.01722.

[72]  M. Joy,et al.  Chandra X-ray observations of Abell 1835 to the virial radius , 2012, 1206.6067.

[73]  A. C. Fabian,et al.  THERMODYNAMICS OF THE COMA CLUSTER OUTSKIRTS , 2013, 1302.4140.

[74]  Elena Pierpaoli,et al.  SUNYAEV–ZEL'DOVICH-MEASURED PRESSURE PROFILES FROM THE BOLOCAM X-RAY/SZ GALAXY CLUSTER SAMPLE , 2012, 1211.1632.

[75]  J. Bond,et al.  ON THE CLUSTER PHYSICS OF SUNYAEV–ZEL'DOVICH AND X-RAY SURVEYS. III. MEASUREMENT BIASES AND COSMOLOGICAL EVOLUTION OF GAS AND STELLAR MASS FRACTIONS , 2012, 1209.4082.

[76]  C. Sarazin The Intracluster Medium , 1992 .

[77]  N. Czakon,et al.  X‐ray, lensing and Sunyaev–Zel'dovich triaxial analysis of Abell 1835 out to R200 , 2011, 1111.6189.

[78]  P. Ade,et al.  The NIKA2 Instrument at 30-m IRAM Telescope: Performance and Results , 2017, 1712.04003.

[79]  N. Dalal,et al.  Splashback in accreting dark matter halos , 2014, 1409.4482.

[80]  Y. Zeldovich,et al.  The Observations of relic radiation as a test of the nature of X-Ray radiation from the clusters of galaxies , 1972 .

[81]  S. Allen,et al.  LARGE-SCALE MOTIONS IN THE PERSEUS GALAXY CLUSTER , 2012, 1208.2990.

[82]  S. Paltani,et al.  The XMM Cluster Outskirts Project (X-COP): Physical conditions of Abell 2142 up to the virial radius , 2016 .

[83]  Enzo Pascale,et al.  The NIKA2 large-field-of-view millimetre continuum camera for the 30 m IRAM telescope , 2017, 1707.00908.

[84]  A. Fabian,et al.  Is there a giant Kelvin–Helmholtz instability in the sloshing cold front of the Perseus cluster? , 2017, 1705.00011.

[85]  E. Rykoff,et al.  On the Level of Cluster Assembly Bias in SDSS , 2016, 1611.00366.

[86]  D. Buote,et al.  TRACING THE GAS TO THE VIRIAL RADIUS (R100) IN A FOSSIL GROUP , 2011, 1106.3322.

[87]  S. More,et al.  The Splashback Radius of Halos from Particle Dynamics. II. Dependence on Mass, Accretion Rate, Redshift, and Cosmology , 2017, 1703.09716.

[88]  Daisuke Nagai,et al.  RESIDUAL GAS MOTIONS IN THE INTRACLUSTER MEDIUM AND BIAS IN HYDROSTATIC MEASUREMENTS OF MASS PROFILES OF CLUSTERS , 2009, 0903.4895.

[89]  IoA,et al.  Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters , 2007, 0706.0033.

[90]  S. Allen,et al.  The growth of the galaxy cluster Abell 85: mergers, shocks, stripping and seeding of clumping , 2014, 1410.1955.

[91]  A. Morandi,et al.  Non-parametric method for measuring gas inhomogeneities from X-ray observations of galaxy clusters , 2013, 1305.5256.

[92]  S. Allen,et al.  X-ray spectroscopy of the Virgo Cluster out to the virial radius , 2011, 1102.2430.

[93]  G. W. Pratt,et al.  Gas entropy in a representative sample of nearby X-ray galaxy clusters (REXCESS): relationship to gas mass fraction , 2009, 0909.3776.

[94]  F. Vazza,et al.  Properties of gas clumps and gas clumping factor in the intra-cluster medium , 2012, 1211.1695.

[95]  Etienne Pointecouteau,et al.  Astrophysics with the Spatially and Spectrally Resolved Sunyaev-Zeldovich E ff ects A Millimetre / Submillimetre Probe of the Warm and Hot Universe , 2018 .

[96]  Annalisa Pillepich,et al.  The X-ray cluster survey with eRosita: forecasts for cosmology, cluster physics and primordial non-Gaussianity , 2011, 1111.6587.

[97]  Alexey Vikhlinin,et al.  Shocks and cold fronts in galaxy clusters , 2007, astro-ph/0701821.

[98]  N. Okabe,et al.  X-Ray observations of a subhalo associated with the NGC 4839 group infalling toward the Coma cluster , 2016, 1607.07554.

[99]  Y. Ishisaki,et al.  Suzaku X-Ray Observations of the Accreting NGC 4839 Group of Galaxies and a Radio Relic in the Coma Cluster , 2013, 1302.2907.

[100]  Maria Teresa Ceballos,et al.  The Athena X-ray Integral Field Unit (X-IFU) , 2016, Astronomical Telescopes + Instrumentation.

[101]  Satoshi Nozawa,et al.  Relativistic corrections to the Sunyaev-Zel'dovich effects for clusters of galaxies , 1999 .

[102]  K. Umetsu,et al.  SUZAKU OBSERVATION OF A1689: ANISOTROPIC TEMPERATURE AND ENTROPY DISTRIBUTIONS ASSOCIATED WITH THE LARGE-SCALE STRUCTURE , 2010, 1002.4811.

[103]  Silvano Molendi,et al.  The X-ray/SZ view of the virial region - I. Thermodynamic properties , 2013, 1301.0617.

[104]  Elmar Pfeffermann,et al.  eROSITA on SRG , 2010, Astronomical Telescopes + Instrumentation.

[105]  ROSAT PSPC observations of 36 high‐luminosity clusters of galaxies: constraints on the gas fraction , 1999, astro-ph/9901304.

[106]  R. Mushotzky,et al.  AXIS: a probe class next generation high angular resolution x-ray imaging satellite , 2018, Astronomical Telescopes + Instrumentation.

[107]  P. A. R. Ade,et al.  SPT-3G: A Multichroic Receiver for the South Pole Telescope , 2018, Journal of Low Temperature Physics.

[108]  T. Broadhurst,et al.  Can the Steep Mass Profile of A1689 Be Explained by a Triaxial Dark Halo? , 2005, astro-ph/0505452.

[109]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: THE POLARIZATION-SENSITIVE ACTPol INSTRUMENT , 2016, The Astrophysical Journal Supplement Series.

[110]  P. Mazzotta,et al.  Universal thermodynamic properties of the intracluster medium over two decades in radius in the X-COP sample , 2018, Astronomy & Astrophysics.

[111]  G. Lake,et al.  ACCRETION SHOCKS IN CLUSTERS OF GALAXIES AND THEIR SZ SIGNATURE FROM COSMOLOGICAL SIMULATIONS , 2009, 0902.3323.

[112]  M. Bonamente,et al.  Gas distribution and clumpiness in the galaxy group NGC 2563 , 2017 .

[113]  Matteo Guainazzi,et al.  Concept of the X-ray Astronomy Recovery Mission , 2018, Astronomical Telescopes + Instrumentation.

[114]  T. Ohashi,et al.  Suzaku measurement of Abell 2204's intracluster gas temperature profile out to 1800 kpc , 2008, 0806.2920.

[115]  S. White,et al.  Assembly bias and splashback in galaxy clusters , 2017, 1702.01682.

[116]  Johannes Hubmayr,et al.  Advanced ACTPol TES Device Parameters and Noise Performance in Fielded Arrays , 2018, Journal of Low Temperature Physics.

[117]  A. Fabian,et al.  Galaxy cluster outskirts: a universal entropy profile for relaxed clusters? , 2012, 1208.5950.

[118]  M. Oguri,et al.  Detailed cluster lensing profiles at large radii and the impact on cluster weak lensing studies , 2011, 1101.0650.

[119]  N. Okabe,et al.  High Metallicity of the X-Ray Gas Up to the Virial Radius of a Binary Cluster of Galaxies: Evidence of Galactic Superwinds at High-Redshift , 2007, 0705.2017.

[120]  L. Spitzer Physics of fully ionized gases , 1956 .

[121]  T. Reiprich,et al.  X-ray analysis of the galaxy group UGC 03957 beyond R200 with Suzaku , 2016, 1603.05255.

[122]  D. Nagai,et al.  NON-EQUILIBRIUM ELECTRONS IN THE OUTSKIRTS OF GALAXY CLUSTERS , 2014, 1410.8142.

[123]  T. Ohashi,et al.  Properties of the Intracluster Medium of Abell 3667 Observed with Suzaku XIS , 2011, 1111.5162.

[124]  H. Hoekstra How well can we determine cluster mass profiles from weak lensing , 2002, astro-ph/0208351.

[125]  F. Vazza,et al.  Gas clumping in galaxy clusters , 2013, 1310.8389.

[126]  A. Cavaliere,et al.  Probing the astrophysics of cluster outskirts , 2010, 1004.3749.

[127]  S. Padin,et al.  Inexpensive mount for a large millimeter-wavelength telescope. , 2014, Applied optics.

[128]  J. Davenport THE KEPLER CATALOG OF STELLAR FLARES , 2016, 1607.03494.

[129]  S. Paltani,et al.  Deep Chandra observations of the stripped galaxy group falling into Abell 2142 , 2017, 1705.05844.

[130]  Xi-liang Zhang,et al.  The nature of EU Pegasi: An Algol-type binary with a δ Scuti-type component , 2018 .

[131]  A. Morandi,et al.  Measuring the gas clumping in Abell 133 , 2013, 1306.6336.

[132]  D. Nagai,et al.  A fast and accurate method for computing the Sunyaev–Zel'dovich signal of hot galaxy clusters , 2012, 1205.5778.

[133]  Norbert Meidinger,et al.  The Wide Field Imager instrument for Athena , 2017, Optical Engineering + Applications.

[134]  S. Allen,et al.  Azimuthally Resolved X-Ray Spectroscopy to the Edge of the Perseus Cluster , 2013, 1307.3592.

[135]  Edward J. Wollack,et al.  The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.

[136]  N. Okabe,et al.  Subaru Weak Lensing Study of Seven Merging Clusters: Distributions of Mass and Baryons , 2007, astro-ph/0702649.

[137]  Maria Teresa Ceballos,et al.  The Athena X-ray Integral Field Unit (X-IFU) , 2018, Journal of Low Temperature Physics.

[138]  Xun Shi The outer profile of dark matter haloes: an analytical approach , 2016, 1603.01742.

[139]  M. Norman,et al.  Turbulent Motions and Shocks Waves in Galaxy Clusters simulated with AMR , 2009, 0905.3169.

[140]  A. Fabian,et al.  X-ray exploration of the outskirts of the nearby Centaurus cluster using Suzaku and Chandra , 2013, 1303.4240.

[141]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[142]  H. Rottgering,et al.  Suzaku observations of the merging galaxy cluster Abell 2255: The northeast radio relic , 2016, 1612.03058.

[143]  A. Finoguenov,et al.  Suzaku study of gas properties along filaments of A2744 , 2013, 1311.1713.

[144]  F. Bertoldi,et al.  Planck's view on the spectrum of the Sunyaev-Zeldovich effect , 2017, 1709.01187.

[145]  E. Pointecouteau,et al.  The XMM Cluster Outskirts Project (X-COP): Thermodynamic properties of the intracluster medium out to R200 in Abell 2319 , 2017, Astronomy & Astrophysics.

[146]  S. More,et al.  DETECTION OF THE SPLASHBACK RADIUS AND HALO ASSEMBLY BIAS OF MASSIVE GALAXY CLUSTERS , 2016, 1601.06063.

[147]  D. Wik,et al.  SUZAKU X-RAY OBSERVATIONS OF THE NEAREST NON-COOL CORE CLUSTER, ANTLIA: DYNAMICALLY YOUNG BUT WITH REMARKABLY RELAXED OUTSKIRTS , 2016, 1602.06950.

[148]  Marshall W. Bautz,et al.  Suzaku Observations of Abell 1795: Cluster Emission to R200 , 2009 .

[149]  Y. Suto,et al.  The Sunyaev–Zel'dovich effect at 5″: RX J1347.5−1145 imaged by ALMA , 2016, 1607.08833.

[150]  Etienne Pointecouteau,et al.  Outskirts of Galaxy Clusters , 2013, Space Science Reviews.

[151]  A. Fabian,et al.  The split in the ancient cold front in the Perseus cluster , 2018, 1803.00898.

[152]  L. Moscardini,et al.  Systematics in the X-ray cluster mass estimators , 2006, astro-ph/0602434.

[153]  D. Nagai,et al.  NONEQUILIBRIUM ELECTRONS AND THE SUNYAEV–ZEL'DOVICH EFFECT OF GALAXY CLUSTERS , 2009, 0907.1287.

[154]  Jeff McMahon,et al.  CCAT-prime: a novel telescope for sub-millimeter astronomy , 2018, Astronomical Telescopes + Instrumentation.

[155]  M. Rossetti,et al.  Abell 2142 at large scales: An extreme case for sloshing? , 2013, 1305.2420.

[156]  R. Teyssier,et al.  nIFTy galaxy cluster simulations – II. Radiative models , 2015, Monthly Notices of the Royal Astronomical Society.

[157]  J. Carlstrom,et al.  Cosmology with the Sunyaev-Zel'dovich Effect , 2002, astro-ph/0208192.

[158]  Satoshi Nozawa,et al.  Relativistic corrections to the Sunyaev-Zel'dovich effects for clusters of galaxies , 1999 .

[159]  J. Hughes,et al.  X-Ray Temperature and Mass Measurements to the Virial Radius of Abell 1413 with Suzaku , 2010, 1001.5133.

[160]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[161]  J. Merten,et al.  A COMPARISON AND JOINT ANALYSIS OF SUNYAEV–ZEL’DOVICH EFFECT MEASUREMENTS FROM PLANCK AND BOLOCAM FOR A SET OF 47 MASSIVE GALAXY CLUSTERS , 2016, 1605.03541.

[162]  N. Yamasaki,et al.  Temperature and entropy profiles to the virial radius of the Abell 1246 cluster observed with Suzaku , 2014, 1406.1600.

[163]  D. Nagai,et al.  GAS CLUMPING IN THE OUTSKIRTS OF ΛCDM CLUSTERS , 2011, 1103.0280.

[164]  S. Borgani,et al.  Pressure of the hot gas in simulations of galaxy clusters , 2015, 1612.07260.

[165]  D. Buote,et al.  THE ENTIRE VIRIAL RADIUS OF THE FOSSIL CLUSTER RX J1159+5531. I. GAS PROPERTIES , 2015, 1503.03145.

[166]  J. Mohr,et al.  The Effects of Clumping and Substructure on Intracluster Medium Mass Measurements , 1999, astro-ph/9904429.

[167]  S. Allen,et al.  Baryons at the Edge of the X-ray–Brightest Galaxy Cluster , 2011, Science.

[168]  D. Nagai,et al.  WEIGHING GALAXY CLUSTERS WITH GAS. II. ON THE ORIGIN OF HYDROSTATIC MASS BIAS IN ΛCDM GALAXY CLUSTERS , 2013, 1308.6589.

[169]  E. Pointecouteau,et al.  Mass Profiles of Galaxy Clusters from X-ray Analysis , 2013, 1303.3530.

[170]  K. Umetsu,et al.  Radio relics tracing the projected mass distribution in CIZA J2242.8+5301 , 2015, 1508.04558.

[171]  E. Komatsu,et al.  Analytical model for non-thermal pressure in galaxy clusters – III. Removing the hydrostatic mass bias , 2014, 1507.04338.

[172]  E. Rykoff,et al.  redMaPPer II: X-RAY AND SZ PERFORMANCE BENCHMARKS FOR THE SDSS CATALOG , 2013, 1303.3373.

[173]  Adrian T. Lee,et al.  CMB-S4 Science Book, First Edition , 2016, 1610.02743.

[174]  N. Okabe,et al.  SUBARU WEAK-LENSING SURVEY OF DARK MATTER SUBHALOS IN THE COMA CLUSTER: SUBHALO MASS FUNCTION AND STATISTICAL PROPERTIES , 2013, 1304.2399.

[175]  Daisuke Nagai,et al.  HYDRODYNAMIC SIMULATION OF NON-THERMAL PRESSURE PROFILES OF GALAXY CLUSTERS , 2014, 1404.4636.

[176]  R. Kraft,et al.  DARK MATTER SUBHALOS AND THE X-RAY MORPHOLOGY OF THE COMA CLUSTER , 2013, 1302.1917.

[177]  N. Aghanim,et al.  A search for warm/hot gas filaments between pairs of SDSS Luminous Red Galaxies , 2017, Monthly Notices of the Royal Astronomical Society.

[178]  J. Nugent,et al.  Suzaku Measurements of Hot Halo Emission at Outskirts for Two Poor Galaxy Groups: NGC 3402 and NGC 5129 , 2017, The Astrophysical Journal.

[179]  J. Silverman,et al.  The Stellar Mass, Star Formation Rate and Dark Matter Halo Properties of LAEs at $z\sim2$ , 2017, 1707.09373.

[180]  G. Hilton,et al.  Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond , 2018, Journal of Low Temperature Physics.

[181]  G. Hurier,et al.  First detection of a virial shock with SZ data: implication for the mass accretion rate of Abell 2319 , 2017, Astronomy & Astrophysics.

[182]  S. Paltani,et al.  The X-ray/SZ view of the virial region. II. Gas mass fraction , 2013, 1301.0624.