On Two Problems in Ramsey-Turán Theory

Alon, Balogh, Keevash and Sudakov proved that the $(k-1)$-partite Tur\'an graph maximizes the number of distinct $r$-edge-colorings with no monochromatic $K_k$ for all fixed $k$ and $r=2,3$, among all $n$-vertex graphs. In this paper, we determine this function asymptotically for $r=2$ among $n$-vertex graphs with sub-linear independence number. Somewhat surprisingly, unlike Alon-Balogh-Keevash-Sudakov's result, the extremal construction from Ramsey-Tur\'an theory, as a natural candidate, does not maximize the number of distinct edge-colorings with no monochromatic cliques among all graphs with sub-linear independence number, even in the 2-colored case. In the second problem, we determine the maximum number of triangles asymptotically in an $n$-vertex $K_k$-free graph $G$ with $\alpha(G)=o(n)$. The extremal graphs have similar structure to the extremal graphs for the classical Ramsey-Tur\'an problem, i.e.~when the number of edges is maximized.

[1]  Béla Bollobás,et al.  On a Ramsey-Turán type problem , 1976, Journal of combinatorial theory. Series B (Print).

[2]  JANOS BOLYAI,et al.  Some remarks on Ramsey ’ s and TurWs theorem , 2002 .

[3]  John Lenz,et al.  On the Ramsey-Turán numbers of graphs and hypergraphs , 2011, 1109.4428.

[4]  Oleg Pikhurko,et al.  The maximum number of K3‐free and K4‐free edge 4‐colorings , 2012, J. Lond. Math. Soc..

[5]  Endre Szemerédi,et al.  More results on Ramsey—Turán type problems , 1983, Comb..

[6]  Miklós Simonovits,et al.  Ramsey-Turán theory , 2001, Discret. Math..

[7]  Noga Alon,et al.  Many T copies in H-free graphs , 2014, Electron. Notes Discret. Math..

[8]  Béla Bollobás,et al.  Pentagons vs. triangles , 2008, Discret. Math..

[9]  J. Sheehan,et al.  On the number of complete subgraphs contained in certain graphs , 1981, J. Comb. Theory, Ser. B.

[10]  Miklós Simonovits,et al.  Phase transitions in the Ramsey-Turán theory , 2013 .

[11]  John Lenz,et al.  Some exact Ramsey–Turán numbers , 2011, 1109.4472.

[12]  Raphael Yuster,et al.  The number of edge colorings with no monochromatic triangle , 1996, J. Graph Theory.

[13]  P. Erdös On an extremal problem in graph theory , 1970 .

[14]  P. Erdos Some New Applications Ok Probability Methods to Combinatorial Analysis and Graph Theory , 2022 .

[15]  Zelealem B. Yilma,et al.  The Erdős–Rothschild problem on edge-colourings with forbidden monochromatic cliques , 2016, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  A. Leaf GRAPH THEORY AND PROBABILITY , 1957 .

[17]  József Balogh,et al.  Triangle factors of graphs without large independent sets and of weighted graphs , 2016, Random Struct. Algorithms.

[18]  N. Alon,et al.  The Number of Edge Colorings with no Monochromatic Cliques , 2004 .