Alias-Free Voxelization of Geometric Objects

Introduces a new concept for alias-free voxelization of geometric objects based on a voxelization model (V-model). The V-model of an object is its representation in 3D continuous space by a trivariate density function. This function is sampled during the voxelization and the resulting values are stored in a volume buffer. This concept enables us to study general issues of sampling and rendering separately from object-specific design issues. It provides us with a possibility to design such V-models, which are correct from the point of view of both the sampling and rendering, thus leading to both alias-free volumetric representation and alias-free rendered images. We performed numerous experiments with different combinations of V-models and reconstruction techniques. We have shown that the V-model with a Gaussian surface density profile combined with tricubic interpolation and Gabor derivative reconstruction outperforms the previously published technique with a linear density profile. This enables higher fidelity of images rendered from volume data due to increased sharpness of edges and thinner surface patches.

[1]  Brian Cabral,et al.  Accelerated volume rendering and tomographic reconstruction using texture mapping hardware , 1994, VVS '94.

[2]  Milos Srámek,et al.  Fast surface rendering from raster data by voxel traversal using chessboard distance , 1994, Proceedings Visualization '94.

[3]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[4]  Arie E. Kaufman,et al.  Object voxelization by filtering , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[5]  T. Moller,et al.  Design of accurate and smooth filters for function and derivative reconstruction , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[6]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[7]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[8]  J. A. Parker,et al.  Comparison of Interpolating Methods for Image Resampling , 1983, IEEE Transactions on Medical Imaging.

[9]  M. Levoy,et al.  Fast volume rendering using a shear-warp factorization of the viewing transformation , 1994, SIGGRAPH.

[10]  Mark W. Jones,et al.  The Production of Volume Data from Triangular Meshes Using Voxelisation , 1996, Comput. Graph. Forum.

[11]  Arie E. Kaufman,et al.  Volume sampled voxelization of geometric primitives , 1993, Proceedings Visualization '93.

[12]  Karl Heinz Höhne,et al.  High quality rendering of attributed volume data , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[13]  Stijn Oomes,et al.  3D Shape Representation: Transforming Polygons into Voxels , 1997, Scale-Space.

[14]  Reiner Lenz,et al.  Evaluation of methods for shaded surface display of CT volumes. , 1991 .

[15]  S.F.F. Gibson,et al.  Using distance maps for accurate surface representation in sampled volumes , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[16]  Daniel Cohen-Or,et al.  Volume graphics , 1993, Computer.

[17]  R. Bernstein,et al.  Shading 3D-Images from CT Using Gray-Level Gradients , 1986, IEEE Transactions on Medical Imaging.

[18]  Karl Heinz Höhne,et al.  High quality rendering of attributed volume data , 1998 .

[19]  Lee Westover,et al.  Footprint evaluation for volume rendering , 1990, SIGGRAPH.

[20]  K. W. Cattermole The Fourier Transform and its Applications , 1965 .

[21]  Martin Frühauf,et al.  Combining Volume Rendering with Line and Surface Rendering , 1991, Eurographics.

[22]  Arthur W. Toga,et al.  Distance field manipulation of surface models , 1992, IEEE Computer Graphics and Applications.

[23]  Jayaram K. Udupa,et al.  Surface Shading in the Cuberille Environment , 1985, IEEE Computer Graphics and Applications.

[24]  Nicholas P. Wilt Object-oriented ray tracing in C++ , 1993 .

[25]  Solomon Eyal Shimony,et al.  3D scan-conversion algorithms for voxel-based graphics , 1987, I3D '86.

[26]  R.T. Whitaker,et al.  3D scan conversion of CSG models into distance volumes , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[27]  R. Yagel,et al.  - 1-eNormal Estimation in 3 D Discrete Spac , 1992 .

[28]  Neil McKenzie,et al.  EM-Cube: an architecture for low-cost real-time volume rendering , 1997, HWWS '97.

[29]  Andreas Pommert,et al.  Investigation of medical 3D-rendering algorithms , 1990, IEEE Computer Graphics and Applications.

[30]  Hanspeter Pfister,et al.  Cube-4-a scalable architecture for real-time volume rendering , 1996, Proceedings of 1996 Symposium on Volume Visualization.

[31]  Arie Kaufman,et al.  Object voxeliztion by filtering , 1998, VVS '98.

[32]  Steve Marschner,et al.  An evaluation of reconstruction filters for volume rendering , 1994, Proceedings Visualization '94.

[33]  M. Bomans,et al.  Volume Visualization in Magnetic Resonance Angiography , 1992 .

[34]  Klaus Mueller,et al.  Evaluation and Design of Filters Using a Taylor Series Expansion , 1997, IEEE Trans. Vis. Comput. Graph..

[35]  Arie E. Kaufman,et al.  Efficient algorithms for scan-converting 3D polygons , 1988, Comput. Graph..

[36]  Arie E. Kaufman,et al.  Discrete ray tracing , 1992, IEEE Computer Graphics and Applications.

[37]  Arie E. Kaufman,et al.  Volume-sampled 3D modeling , 1994, IEEE Computer Graphics and Applications.

[38]  Thomas Malzbender,et al.  Frequency Analysis of Gradient Estimators in Volume Rendering , 1996, IEEE Trans. Vis. Comput. Graph..

[39]  Arie E. Kaufman,et al.  An Algorithm for 3D Scan-Conversion of Polygons , 1987, Eurographics.