Functions with prescribed best linear approximations

A common problem in applied mathematics is that of finding a function in a Hilbert space with prescribed best approximations from a finite number of closed vector subspaces. In the present paper we study the question of the existence of solutions to such problems. A finite family of subspaces is said to satisfy the Inverse Best Approximation Property (IBAP) if there exists a point that admits any selection of points from these subspaces as best approximations. We provide various characterizations of the IBAP in terms of the geometry of the subspaces. Connections between the IBAP and the linear convergence rate of the periodic projection algorithm for solving the underlying affine feasibility problem are also established. The results are applied to investigate problems in harmonic analysis, integral equations, signal theory, and wavelet frames.

[1]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[2]  P. L. Combettes,et al.  Foundation of set theoretic estimation , 1993 .

[3]  O. Christensen Frames, Riesz bases, and discrete Gabor/wavelet expansions , 2001 .

[4]  P. L. Combettes The foundations of set theoretic estimation , 1993 .

[5]  John von Neumann,et al.  Rings of operators , 1961 .

[6]  M. Benedicks On Fourier transforms of functions supported on sets of finite Lebesgue measure , 1985 .

[7]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[8]  P. Porcelli,et al.  On rings of operators , 1967 .

[9]  P. L. Combettes,et al.  Hilbertian convex feasibility problem: Convergence of projection methods , 1997 .

[10]  Charles L. Byrne,et al.  Signal Processing: A Mathematical Approach , 1993 .

[11]  D. Cahana,et al.  Restoration of arbitrary finite-energy optical objects from limited spatial and spectral information , 1981 .

[12]  E. Beckenbach CONVEX FUNCTIONS , 2007 .

[13]  D. Varberg Convex Functions , 1973 .

[14]  Peter G. Casazza,et al.  Riesz-Fischer Sequences and Lower Frame Bounds , 2002 .

[15]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[16]  J. Neumann On Rings of Operators. Reduction Theory , 1949 .

[17]  Henry Stark,et al.  Image recovery: Theory and application , 1987 .

[18]  Heinz H. Bauschke,et al.  Characterizing arbitrarily slow convergence in the method of alternating projections , 2007, Int. Trans. Oper. Res..

[19]  Philippe Jaming,et al.  Nazarov's uncertainty principles in higher dimension , 2006, J. Approx. Theory.

[20]  R. Range Holomorphic Functions and Integral Representations in Several Complex Variables , 1998 .

[21]  V. Havin The Uncertainty Principle in Harmonic Analysis , 1994 .

[22]  D. Donoho,et al.  Uncertainty principles and signal recovery , 1989 .

[23]  R. Phelps Convex Functions, Monotone Operators and Differentiability , 1989 .

[24]  Howard L. Weinert,et al.  Error bounds for the method of alternating projections , 1988, Math. Control. Signals Syst..

[25]  H BauschkeHeinz,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996 .

[26]  Jim Hefferon,et al.  Linear Algebra , 2012 .

[27]  Dante C. Youla,et al.  Generalized Image Restoration by the Method of Alternating Orthogonal Projections , 1978 .

[28]  Peter Kosmol,et al.  The product of affine orthogonal projections , 1991 .

[29]  W. Greub Linear Algebra , 1981 .

[30]  W D Montgomery Optical applications of von Neumann's alternating-projection theorem. , 1982, Optics letters.

[31]  A. Papoulis A new algorithm in spectral analysis and band-limited extrapolation. , 1975 .

[32]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[33]  C. Badea,et al.  The rate of convergence in the method of alternating projections , 2010, 1006.2047.

[34]  J. Dye A generalization of a theorem of Amemiya and Ando on the convergence of random products of contractions in Hilbert space , 1989 .

[35]  Functions with Time and Frequency Gaps , 1995 .

[36]  N. Nikol’skiĭ,et al.  Treatise on the Shift Operator , 1986 .

[37]  A. Berthier,et al.  On support properties of Lp-functions and their Fourier transforms , 1977 .

[38]  Frank Deutsch,et al.  The rate of convergence for the cyclic projections algorithm III: Regularity of convex sets , 2008, J. Approx. Theory.

[39]  O. Christensen Moment Problems and Stability Results for Frames with Applications to Irregular Sampling and Gabor Frames , 1996 .

[40]  Heinz H. Bauschke,et al.  Extrapolation algorithm for affine-convex feasibility problems , 2006, Numerical Algorithms.

[41]  Heinz H. Bauschke,et al.  Accelerating the convergence of the method of alternating projections , 2003 .

[42]  G. Folland,et al.  The uncertainty principle: A mathematical survey , 1997 .