Dual gas-bubble-assisted solvothermal synthesis of magnetite with tunable size and structure.

We present a facile solvothermal approach by employing ammonium bicarbonate (NH4HCO3) and ammonium acetate (NH4Ac) as dual gas-bubble-generating structure-directing agent to produce of magnetite (Fe3O4) particles with tunable size ranging from 90 nm to 400 nm and controllable structures including porous and hollow construction. The size, morphology and structure of the final products are achieved by simple adjustment of the molar ratio of NH4HCO3 and NH4Ac, ammonium ion concentration and the reaction time. The results reveal that the molar ratio of NH4HCO3 and NH4Ac strongly influenced the morphology and size of magnetite particles, even could decide the kind of architecture including solid, hollow and porous to form. Particularly, ammonium ion molar concentration plays a significant role in controlling size and magnetic property for magnetite particles. Simultaneously, prolonging the reaction time is beneficial to the magnetite particles growth and inner space escalation with altered reaction time at a certain concentration of ammonium and molar ratio of NH4HCO3 and NH4Ac. Such a design conception of dual gas-bubble-assistance used here is promisingly positive and significant for hollow magnetic particles fabrication and may be extended to other nano-scale hollow construction.