Selective Serial Multi-Antibody Biosensing with TOPAS Microstructured Polymer Optical Fibers

We have developed a fluorescence-based fiber-optical biosensor, which can selectively detect different antibodies in serial at preselected positions inside a single piece of fiber. The fiber is a microstructured polymer optical fiber fabricated from TOPAS cyclic olefin copolymer, which allows for UV activation of localized sensor layers inside the holes of the fiber. Serial fluorescence-based selective sensing of Cy3-labelled α-streptavidin and Cy5-labelled α-CRP antibodies is demonstrated.

[1]  Ole Bang,et al.  Towards biochips using microstructured optical fiber sensors , 2006, Analytical and bioanalytical chemistry.

[2]  Yinian Zhu,et al.  Long-period gratings inscribed in air- and water-filled photonic crystal fiber for refractometric sensing of aqueous solution , 2008 .

[3]  Yuze Sun,et al.  Sensitive optical biosensors for unlabeled targets: a review. , 2008, Analytica chimica acta.

[4]  X. Yang,et al.  Fluorescence pH probe based on microstructured polymer optical fiber. , 2007, Optics express.

[5]  C. Emslie,et al.  Polymer optical fibres , 1988 .

[6]  Peter Uhd Jepsen,et al.  Fabrication and characterization of porous-core honeycomb bandgap THz fibers. , 2012, Optics express.

[7]  Ole Bang,et al.  Localized biosensing with Topas microstructured polymer optical fiber: erratum , 2007 .

[8]  Ole Bang,et al.  Microstructured optical fiber refractive index sensor. , 2010, Optics letters.

[9]  Guillaume Laffont,et al.  Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer. , 2007, Optics letters.

[10]  D. Abbott,et al.  Direct probing of evanescent field for characterization of porous terahertz fibers , 2011 .

[11]  Yi Zhang,et al.  Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering , 2007 .

[12]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[13]  J. Jensen,et al.  Selective detection of antibodies in microstructured polymer optical fibers. , 2005, Optics express.

[14]  J. Baumberg,et al.  Surface‐Enhanced Raman Scattering Using Microstructured Optical Fiber Substrates , 2007 .

[15]  O. Bang,et al.  Highly sensitive refractometer with a photonic-crystal-fiber long-period grating. , 2007, Optics letters.

[16]  D. Richardson,et al.  Developing holey fibres for evanescent field devices , 1999 .

[17]  Wei Jin,et al.  Evanescent-wave gas sensing using microstructure fiber , 2002 .

[18]  Thomas Tanggaard Alkeskjold,et al.  Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers. , 2009, Optics express.

[19]  Knight,et al.  Single-Mode Photonic Band Gap Guidance of Light in Air. , 1999, Science.

[20]  Alessio Stefani,et al.  Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization , 2012 .

[21]  A. Bjarklev,et al.  Gas sensing using air-guiding photonic bandgap fibers , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[22]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[23]  Christos Markos,et al.  High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. , 2013, Optics express.

[24]  Gang-Ding Peng,et al.  Optical fibre temperature and humidity sensor , 2010 .

[25]  R. Buczyński Photonic Crystal Fibers , 2004 .

[26]  María Espinosa Bosch,et al.  Recent Development in Optical Fiber Biosensors , 2007, Sensors (Basel, Switzerland).

[27]  J. Jensen,et al.  Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[28]  Ole Bang,et al.  Refractive Index Sensing in an All-Solid Twin-Core Photonic Bandgap Fiber , 2010, IEEE Sensors Journal.

[29]  G. Khanarian Optical properties of cyclic olefin copolymers , 2001 .

[30]  Anders Bjarklev,et al.  Optical devices based on liquid crystal photonic bandgap fibres. , 2003, Optics express.

[31]  D. Webb,et al.  Humidity insensitive TOPAS polymer fiber Bragg grating sensor. , 2011, Optics express.

[32]  J. Jensen,et al.  Photonic crystal fiber long-period gratings for biochemical sensing. , 2006, Optics express.

[33]  C. Gu,et al.  Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe. , 2008, Optics express.

[34]  Henry Du,et al.  Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy. , 2010, Optics letters.

[35]  Alessio Stefani,et al.  Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing. , 2011, Optics express.

[36]  David J. Richardson,et al.  Sensing with microstructured optical fibres , 2001 .

[37]  B. Kuhlmey,et al.  Coated photonic bandgap fibres for low-index sensing applications: cutoff analysis. , 2009, Optics express.

[38]  Simon Fleming,et al.  Microstructured polymer optical fibre. , 2001 .

[39]  Henry Du,et al.  Solid-core photonic crystal fiber as a Raman spectroscopy platform with a silica core as an internal reference. , 2006, Optics letters.

[40]  W. Peng,et al.  Random-hole optical fiber evanescent-wave gas sensing. , 2004, Optics letters.

[41]  S. Sukhishvili,et al.  Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles. , 2009, Optics letters.

[42]  Ole Bang,et al.  Label-free and selective nonlinear fiber-optical biosensing. , 2008, Optics express.

[43]  David J. Webb,et al.  Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer , 2011 .

[44]  John M. Fini,et al.  Microstructure fibres for optical sensing in gases and liquids , 2004 .

[45]  Yinian Zhu,et al.  Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor. , 2011, Biosensors & bioelectronics.

[46]  Tanya M Monro,et al.  Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors. , 2008, Optics express.

[47]  Alexander Argyros,et al.  Surface enhanced Raman scattering in a hollow core microstructured optical fiber. , 2007, Optics express.

[48]  C. Gu,et al.  Hollow core photonic crystal fiber surface-enhanced Raman probe , 2006 .

[49]  Michael Scalora,et al.  Photonic-crystal fiber as a multifunctional optical sensor and sample collector. , 2005, Optics express.

[50]  Yinian Zhu,et al.  Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing. , 2006, Optics express.

[51]  Stephen C Warren-Smith,et al.  Enhanced fluorescence sensing using microstructured optical fibers: a comparison of forward and backward collection modes. , 2008, Optics letters.

[52]  F Benabid,et al.  Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling. , 2006, Optics express.

[53]  Peter Uhd Jepsen,et al.  Bendable, low-loss Topas fibers for the terahertz frequency range. , 2009, Optics express.

[54]  Christos Markos,et al.  Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers. , 2011, Optics express.

[55]  Ole Bang,et al.  Localized biosensing with Topas microstructured polymer optical fiber. , 2007, Optics letters.

[56]  S. Sukhishvili,et al.  Towards Full‐Length Accumulative Surface‐Enhanced Raman Scattering‐Active Photonic Crystal Fibers , 2010, Advanced materials.

[57]  A. Argyros,et al.  Microstructured Polymer Optical Fibers , 2009, Journal of Lightwave Technology.

[58]  M. Large,et al.  Liquid-filled hollow core microstructured polymer optical fiber. , 2006, Optics express.

[59]  Ole Bang,et al.  Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing , 2007, 0708.4382.

[60]  Nicolas Godbout,et al.  Prospective for biodegradable microstructured optical fibers. , 2007, Optics letters.

[61]  George P. Anderson,et al.  RAPTOR: a fluoroimmunoassay-based fiber optic sensor for detection of biological threats , 2003 .