HMaViz: Human-machine analytics for visual recommendation

Visualizations are context-specific. Understanding the context of visualizations before deciding to use them is a daunting task since users have various backgrounds, and there are thousands of available visual representations (and their variances). To this end, this paper proposes a visual analytics framework to achieve the following research goals: (1) to automatically generate a number of suitable representations for visualizing the input data and present it to users as a catalog of visualizations with different levels of abstractions and data characteristics on one/two/multi-dimensional spaces (2) to infer aspects of the user’s interest based on their interactions (3) to narrow down a smaller set of visualizations that suit users analysis intention. The results of this process give our analytics system the means to better understand the user’s analysis process and enable it to better provide timely recommendations.

[1]  A. Madansky Identification of Outliers , 1988 .

[2]  Ulrik Brandes,et al.  Quality Metrics for Information Visualization , 2018, Comput. Graph. Forum.

[3]  Stephen M. Casner,et al.  Task-analytic approach to the automated design of graphic presentations , 1991, TOGS.

[4]  Robert Kosara,et al.  Pargnostics: Screen-Space Metrics for Parallel Coordinates , 2010, IEEE Transactions on Visualization and Computer Graphics.

[5]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[6]  Kazuho Watanabe,et al.  Biclustering multivariate data for correlated subspace mining , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[7]  Luisa Turrin Fernholz,et al.  The Practice of Data Analysis: Essays in Honor of John W. Tukey , 2014 .

[8]  Jihane Karim,et al.  Hybrid system for personalized recommendations , 2014, 2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS).

[9]  Ben Shneiderman,et al.  A Rank-by-Feature Framework for Unsupervised Multidimensional Data Exploration Using Low Dimensional Projections , 2004, IEEE Symposium on Information Visualization.

[10]  K. Gabriel,et al.  The biplot graphic display of matrices with application to principal component analysis , 1971 .

[11]  Johannes Fuchs,et al.  ClockMap: Enhancing Circular Treemaps with Temporal Glyphs for Time-Series Data , 2012, EuroVis.

[12]  Lijie Fu,et al.  Implementation of Three-dimensional Scagnostics , 2009 .

[13]  Laurence Moroney,et al.  The Firebase Realtime Database , 2017 .

[14]  Enrico Bertini,et al.  Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[15]  Dunja Mladenic,et al.  Text-learning and related intelligent agents: a survey , 1999, IEEE Intell. Syst..

[16]  Arvind Satyanarayan,et al.  Vega-Lite: A Grammar of Interactive Graphics , 2018, IEEE Transactions on Visualization and Computer Graphics.

[17]  Pat Hanrahan,et al.  Polaris: A System for Query, Analysis, and Visualization of Multidimensional Relational Databases , 2002, IEEE Trans. Vis. Comput. Graph..

[18]  Reza Rafeh,et al.  Recommender Systems in ECommerce , 2017 .

[19]  Raghu Machiraju,et al.  Visualizing Multidimensional Data with Glyph SPLOMs , 2014, Comput. Graph. Forum.

[20]  Miroslaw Truszczynski,et al.  Answer set programming at a glance , 2011, Commun. ACM.

[21]  Aditya G. Parameswaran,et al.  Towards Visualization Recommendation Systems , 2016, SGMD.

[22]  R. Grossman,et al.  Graph-theoretic scagnostics , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[23]  J. V. Ryzin,et al.  Clustering Algorithms@@@Cluster Analysis Algorithms@@@Classification and Clustering , 1981 .

[24]  Çagatay Demiralp,et al.  Data2Vis: Automatic Generation of Data Visualizations Using Sequence-to-Sequence Recurrent Neural Networks , 2018, IEEE Computer Graphics and Applications.

[25]  Michael Owonibi,et al.  A Review on Visualization Recommendation Strategies , 2017, VISIGRAPP.

[26]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[27]  Tim Kraska,et al.  VizML: A Machine Learning Approach to Visualization Recommendation , 2018, CHI.

[28]  A. M. Madni,et al.  Recommender systems in e-commerce , 2014, 2014 World Automation Congress (WAC).

[29]  Kanit Wongsuphasawat,et al.  Voyager 2: Augmenting Visual Analysis with Partial View Specifications , 2017, CHI.

[30]  John Riedl,et al.  Combining Collaborative Filtering with Personal Agents for Better Recommendations , 1999, AAAI/IAAI.

[31]  Leland Wilkinson,et al.  TimeExplorer: Similarity Search Time Series by Their Signatures , 2013, ISVC.

[32]  Jeffrey Heer,et al.  Formalizing Visualization Design Knowledge as Constraints: Actionable and Extensible Models in Draco , 2018, IEEE Transactions on Visualization and Computer Graphics.

[33]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[34]  Leland Wilkinson,et al.  TimeSeer: Scagnostics for High-Dimensional Time Series , 2013, IEEE Transactions on Visualization and Computer Graphics.

[35]  Taghi M. Khoshgoftaar,et al.  A Survey of Collaborative Filtering Techniques , 2009, Adv. Artif. Intell..

[36]  James R. Eagan,et al.  Low-level components of analytic activity in information visualization , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[37]  Pat Hanrahan,et al.  Show Me: Automatic Presentation for Visual Analysis , 2007, IEEE Transactions on Visualization and Computer Graphics.

[38]  Zhen Wen,et al.  Behavior-driven visualization recommendation , 2009, IUI.

[39]  Sukumar Nandi,et al.  An Outlier Detection Method Based on Clustering , 2011, 2011 Second International Conference on Emerging Applications of Information Technology.

[40]  Hans-Peter Seidel,et al.  An Edge-Bundling Layout for Interactive Parallel Coordinates , 2014, 2014 IEEE Pacific Visualization Symposium.

[41]  Alexandru Telea,et al.  Skeleton-Based Scagnostics , 2018, IEEE Transactions on Visualization and Computer Graphics.

[42]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[43]  Steven F. Roth,et al.  Data characterization for intelligent graphics presentation , 1990, CHI '90.

[44]  Alex Endert,et al.  Finding Waldo: Learning about Users from their Interactions , 2014, IEEE Transactions on Visualization and Computer Graphics.

[45]  Luisa Turrin Fernholz,et al.  practice / data analysis , 2022 .

[46]  Vung Pham,et al.  SOAViz: Visualization for Portable X-ray Fluorescence Soil Profiles , 2019, EnvirVis@EuroVis.

[47]  Wei Chu,et al.  A contextual-bandit approach to personalized news article recommendation , 2010, WWW '10.

[48]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[49]  Ngan V. T. Nguyen,et al.  ContiMap: Continuous Heatmap for Large Time Series Data , 2020, 2020 Visualization in Data Science (VDS).

[50]  Ben Shneiderman,et al.  Dynamic Query Tools for Time Series Data Sets: Timebox Widgets for Interactive Exploration , 2004, Inf. Vis..

[51]  Kanit Wongsuphasawat,et al.  Voyager: Exploratory Analysis via Faceted Browsing of Visualization Recommendations , 2016, IEEE Transactions on Visualization and Computer Graphics.

[52]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[53]  Vung Pham,et al.  Outliagnostics: Visualizing Temporal Discrepancy in Outlying Signatures of Data Entries , 2019, 2019 IEEE Visualization in Data Science (VDS).

[54]  Stefan Pietschmann,et al.  Context-aware Recommendation of Visualization Components , 2012 .

[55]  Jing Yang,et al.  Guidance in the human-machine analytics process , 2018, Vis. Informatics.

[56]  Leland Wilkinson,et al.  Transforming Scagnostics to Reveal Hidden Features , 2014, IEEE Transactions on Visualization and Computer Graphics.

[57]  Juliana Freire,et al.  VisComplete: Automating Suggestions for Visualization Pipelines , 2008, IEEE Transactions on Visualization and Computer Graphics.

[58]  Douglas M. Hawkins Identification of Outliers , 1980, Monographs on Applied Probability and Statistics.

[59]  Matthew O. Ward,et al.  Value and Relation Display for Interactive Exploration of High Dimensional Datasets , 2004, IEEE Symposium on Information Visualization.

[60]  Vincent Kanade,et al.  Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.

[61]  Vung Pham,et al.  ScagnosticsJS: Extended Scatterplot Visual Features for the Web , 2020, Eurographics.

[62]  Robert L. Grossman,et al.  High-Dimensional Visual Analytics: Interactive Exploration Guided by Pairwise Views of Point Distributions , 2006, IEEE Transactions on Visualization and Computer Graphics.

[63]  Leland Wilkinson,et al.  Visualizing Big Data Outliers Through Distributed Aggregation , 2018, IEEE Transactions on Visualization and Computer Graphics.