Sequentiality in Real Number Computation
暂无分享,去创建一个
[1] Martín Hötzel Escardó,et al. PCF extended with real numbers : a domain-theoretic approach to higher-order exact real number computation , 1997 .
[2] Abbas Edalat,et al. Semantics of exact real arithmetic , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.
[3] Reinhold Heckmann. How Many Argument Digits are Needed to Produce n Result Digits? , 1999, Electron. Notes Theor. Comput. Sci..
[4] W. Rudin. Principles of mathematical analysis , 1964 .
[5] Milos D. Ercegovac,et al. On-Line Algorithms for Division and Multiplication , 1977, IEEE Transactions on Computers.
[6] Reinhold Heckmann. Contractivity of linear fractional transformations , 2002, Theor. Comput. Sci..
[7] Vasco Brattka,et al. Recursive Characterization of Computable Real-Valued Functions and Relations , 1996, Theor. Comput. Sci..
[8] Robert Cartwright,et al. Exact real arithmetic formulating real numbers as functions , 1990 .
[9] K. Sieber. Applications of Categories in Computer Science: Reasoning about sequential functions via logical relations , 1992 .
[10] H. Enderton. Elements of Set Theory , 1977 .
[11] Reinhold Heckmann. Translation of Taylor Series into LFT Expansions , 2001, Symbolic Algebraic Methods and Verification Methods.
[12] J. R. Marcial-Romero,et al. Semantics of a sequential language for exact real-number computation , 2004, LICS 2004.
[13] Klaus Weihrauch,et al. Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.
[14] K. Gödel. The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. , 1938, Proceedings of the National Academy of Sciences of the United States of America.
[15] Reinhold Heckmann. Big Integers and Complexity Issues in Exact Real Arithmetic , 1998, Electron. Notes Theor. Comput. Sci..
[16] Alley Stoughton. Interdefinability of Parallel Operations in PCF , 1991, Theor. Comput. Sci..
[17] Samson Abramsky,et al. Domain theory , 1995, LICS 1995.
[18] G.D. Plotkin,et al. LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..
[19] D. Bridges,et al. Constructive functional analysis , 1979 .
[20] Harold T. Hodes,et al. The | lambda-Calculus. , 1988 .
[21] Norbert Th. Müller,et al. The iRRAM: Exact Arithmetic in C++ , 2000, CCA.
[22] Valérie Ménissier-Morain,et al. Arbitrary precision real arithmetic: design and algorithms , 2005, J. Log. Algebraic Methods Program..
[23] Richard S. Bird,et al. Introduction to functional programming using haskeu , 1998 .
[24] Pietro Di Gianantonio. A Functional Approach to Computability on Real Numbers , 2005 .
[25] Pietro Di Gianantonio. An Abstract Data Type for Real Numbers , 1999, Theor. Comput. Sci..
[26] Martín Hötzel Escardó,et al. Effective and sequential definition by cases on the reals via infinite signed-digit numerals , 1997, COMPROX.
[27] Jürgen Hauck. Berechenbare Reelle Funktionenfolgen , 1976, Math. Log. Q..
[28] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[29] Hans-Juergen Boehm,et al. Exact real arithmetic: a case study in higher order programming , 1986, LFP '86.
[30] Roberto M. Amadio,et al. Domains and Lambda-Calculi (Cambridge Tracts in Theoretical Computer Science) , 2008 .
[31] Andrew M. Pitts,et al. A First Order Theory of Names and Binding , 2001 .
[32] Marian Boykan Pour-El,et al. On a simple definition of computable function of a real variable-with applications to functions of a complex variable , 1975, Math. Log. Q..
[33] Abbas Edalat,et al. A new representation for exact real numbers , 1997, MFPS.
[34] John Longley. When is a functional program not a functional program? , 1999, ICFP '99.
[35] Reinhold Heckmann. The Appearance of Big Integers in Exact Real Arithmetic Based on Linear Fractional Transformations , 1998, FoSSaCS.
[36] Jerzy Tiuryn,et al. A New Characterization of Lambda Definability , 1993, TLCA.
[37] Abbas Edalat,et al. Lazy computation with exact real numbers , 1998, ICFP '98.