Sequentiality in Real Number Computation

1 Introduction 31.1 Classes of Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 31.1.1 Countable Sets of Numbers: N, Z and Q . . . . . . . . . 41.1.2 Uncountable Sets of Numbers: R and C . . . . . . . . . . 71.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 111.2 Computation on Countable Sets of Numbers . . . . . . . . . . . . 121.2.1 Natural Numbers . . . . . . . . . . . . . . . . . . . . . . 131.2.2 Rational Numbers . . . . . . . . . . . . . . . . . . . . . 161.3 Computation on Real Numbers . . . . . . . . . . . . . . . . . . . 171.3.1 Floating Point Representation . . . . . . . . . . . . . . . 171.3.2 Cauchy Sequence Representation . . . . . . . . . . . . . 201.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 Technical Background 292.1 λ-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292.2 Domains for Computation . . . . . . . . . . . . . . . . . . . . . 332.3 PCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372.3.1 Operational Semantics of PCF . . . . . . . . . . . . . . . 392.3.2 Denotational Semantics of PCF . . . . . . . . . . . . . . 402.3.3 The Necessity of Parallel Operators . . . . . . . . . . . . 412.4 Sequentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48i

[1]  Martín Hötzel Escardó,et al.  PCF extended with real numbers : a domain-theoretic approach to higher-order exact real number computation , 1997 .

[2]  Abbas Edalat,et al.  Semantics of exact real arithmetic , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[3]  Reinhold Heckmann How Many Argument Digits are Needed to Produce n Result Digits? , 1999, Electron. Notes Theor. Comput. Sci..

[4]  W. Rudin Principles of mathematical analysis , 1964 .

[5]  Milos D. Ercegovac,et al.  On-Line Algorithms for Division and Multiplication , 1977, IEEE Transactions on Computers.

[6]  Reinhold Heckmann Contractivity of linear fractional transformations , 2002, Theor. Comput. Sci..

[7]  Vasco Brattka,et al.  Recursive Characterization of Computable Real-Valued Functions and Relations , 1996, Theor. Comput. Sci..

[8]  Robert Cartwright,et al.  Exact real arithmetic formulating real numbers as functions , 1990 .

[9]  K. Sieber Applications of Categories in Computer Science: Reasoning about sequential functions via logical relations , 1992 .

[10]  H. Enderton Elements of Set Theory , 1977 .

[11]  Reinhold Heckmann Translation of Taylor Series into LFT Expansions , 2001, Symbolic Algebraic Methods and Verification Methods.

[12]  J. R. Marcial-Romero,et al.  Semantics of a sequential language for exact real-number computation , 2004, LICS 2004.

[13]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[14]  K. Gödel The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Reinhold Heckmann Big Integers and Complexity Issues in Exact Real Arithmetic , 1998, Electron. Notes Theor. Comput. Sci..

[16]  Alley Stoughton Interdefinability of Parallel Operations in PCF , 1991, Theor. Comput. Sci..

[17]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[18]  G.D. Plotkin,et al.  LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..

[19]  D. Bridges,et al.  Constructive functional analysis , 1979 .

[20]  Harold T. Hodes,et al.  The | lambda-Calculus. , 1988 .

[21]  Norbert Th. Müller,et al.  The iRRAM: Exact Arithmetic in C++ , 2000, CCA.

[22]  Valérie Ménissier-Morain,et al.  Arbitrary precision real arithmetic: design and algorithms , 2005, J. Log. Algebraic Methods Program..

[23]  Richard S. Bird,et al.  Introduction to functional programming using haskeu , 1998 .

[24]  Pietro Di Gianantonio A Functional Approach to Computability on Real Numbers , 2005 .

[25]  Pietro Di Gianantonio An Abstract Data Type for Real Numbers , 1999, Theor. Comput. Sci..

[26]  Martín Hötzel Escardó,et al.  Effective and sequential definition by cases on the reals via infinite signed-digit numerals , 1997, COMPROX.

[27]  Jürgen Hauck Berechenbare Reelle Funktionenfolgen , 1976, Math. Log. Q..

[28]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[29]  Hans-Juergen Boehm,et al.  Exact real arithmetic: a case study in higher order programming , 1986, LFP '86.

[30]  Roberto M. Amadio,et al.  Domains and Lambda-Calculi (Cambridge Tracts in Theoretical Computer Science) , 2008 .

[31]  Andrew M. Pitts,et al.  A First Order Theory of Names and Binding , 2001 .

[32]  Marian Boykan Pour-El,et al.  On a simple definition of computable function of a real variable-with applications to functions of a complex variable , 1975, Math. Log. Q..

[33]  Abbas Edalat,et al.  A new representation for exact real numbers , 1997, MFPS.

[34]  John Longley When is a functional program not a functional program? , 1999, ICFP '99.

[35]  Reinhold Heckmann The Appearance of Big Integers in Exact Real Arithmetic Based on Linear Fractional Transformations , 1998, FoSSaCS.

[36]  Jerzy Tiuryn,et al.  A New Characterization of Lambda Definability , 1993, TLCA.

[37]  Abbas Edalat,et al.  Lazy computation with exact real numbers , 1998, ICFP '98.