Correcting first‐order errors in snow water equivalent estimates using a multifrequency, multiscale radiometric data assimilation scheme

A season-long, multiscale, multifrequency radiometric data assimilation experiment is performed to test the feasibility of snow water equivalent (SWE) estimation. Synthetic passive microwave (PM) observations at Advanced Microwave Scanning Radiometer-Earth Observing System frequencies and 25 km resolution and synthetic near infrared (NIR) narrowband albedo observations corresponding to Moderate Resolution Imaging Spectroradiometer band 5 (1230–1250 μm) and 1 km resolution are assimilated into a land surface model snow scheme using the ensemble Kalman filter. First-order sources of model uncertainty, including error in precipitation quantity, grain size evolution, precipitation spatial distribution, and vegetation leaf area index are modeled. SWE remote sensing retrieval schemes would be of limited value for these scenarios where snow depth ranged between 1.0 and 2.0 m, grain size varied in space, significant vegetation was present, and the snowpack sometimes contained liquid water. Nevertheless, the true basinwide SWE is recovered, in general, within a root-mean-square error (RMSE) of approximately 2 cm. Synergy is observed between the PM and NIR measurements because of the complementary nature of the multiscale, multifrequency measurements. Results from the assimilation are compared to those from a pure modeling approach and from a remote sensing retrieval approach. The effects of model uncertainty, measurement error, and ensemble size are investigated.

[1]  Thorsten Markus,et al.  Detecting and measuring new snow accumulation on ice sheets by satellite remote sensing , 2005 .

[2]  Leung Tsang,et al.  A prototype AMSR-E global snow area and snow depth algorithm , 2003, IEEE Trans. Geosci. Remote. Sens..

[3]  J. Dozier,et al.  A Hyperspectral Method for Remotely Sensing the Grain Size of Snow , 2000 .

[4]  Min-Jeong Kim,et al.  A physical model to determine snowfall over land by microwave radiometry , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[5]  J. Dozier Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper , 1989 .

[6]  T. Painter,et al.  Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data , 2003 .

[7]  Edward J. Kim,et al.  Comparison of local scale measured and modelled brightness temperatures and snow parameters from the CLPX 2003 by means of a dense medium radiative transfer theory model , 2006 .

[8]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. I: Pure Snow , 1980 .

[9]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[10]  Vivek K. Arora,et al.  A parameterization of leaf phenology for the terrestrial ecosystem component of climate models , 2005 .

[11]  David A. Robinson,et al.  A comparison of modeled, remotely sensed, and measured snow water equivalent in the northern Great Plains , 2000 .

[12]  Paul R. Houser,et al.  Scanning multichannel microwave radiometer snow water equivalent assimilation , 2007 .

[13]  M. Clark,et al.  Probabilistic Quantitative Precipitation Estimation in Complex Terrain , 2005 .

[14]  P. Reich,et al.  Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups , 1998, Oecologia.

[15]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .

[16]  Roger C. Bales,et al.  Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data , 2003 .

[17]  Christian Mätzler,et al.  Relief effects for passive microwave remote sensing , 1998 .

[18]  Andreas Wiesmann,et al.  Extension of the Microwave Emission Model of Layered Snowpacks to Coarse-Grained Snow , 1999 .

[19]  Lifeng Luo,et al.  Snow process modeling in the North American Land Data Assimilation System (NLDAS): 1. Evaluation of model‐simulated snow cover extent , 2003 .

[20]  Yongkang Xue,et al.  A simple snow-atmosphere-soil transfer model , 1999 .

[21]  Zhiliang Zhu,et al.  Forest resources of the United States, 1992. , 1993 .

[22]  Martyn P. Clark,et al.  DECLINING MOUNTAIN SNOWPACK IN WESTERN NORTH AMERICA , 2005 .

[23]  A. Wiesmann,et al.  Microwave Emission Model of Layered Snowpacks , 1999 .

[24]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[25]  Dorothy K. Hall,et al.  Nimbus-7 SMMR derived global snow cover parameters , 1987 .

[26]  Alfred T. C. Chang,et al.  Quantifying the uncertainty in passive microwave snow water equivalent observations , 2005 .

[27]  Sylviane Surdyk,et al.  Using microwave brightness temperature to detect short-term surface air temperature changes in Antarctica: An analytical approach , 2002 .

[28]  A. Tait,et al.  Estimation of snow water equivalent using passive microwave radiation data , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[29]  M. Clark,et al.  Snow Data Assimilation via an Ensemble Kalman Filter , 2006 .

[30]  W. Sloan,et al.  Incorporating topographic variability into a simple regional snowmelt model , 2004 .

[31]  D. Lettenmaier,et al.  Assimilating remotely sensed snow observations into a macroscale hydrology model , 2006 .

[32]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave. , 1984, Applied optics.

[33]  Jouni Pulliainen,et al.  Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations , 2006 .

[34]  David R. Legates,et al.  The Accuracy of United States Precipitation Data , 1994 .

[35]  M. Williams,et al.  Sublimation from a seasonal snowpack at a continental, mid‐latitude alpine site , 1999 .

[36]  B. E. Goodison,et al.  Algorithm development for the estimation of snow water equivalent in the boreal forest using passive microwave data , 2003 .

[37]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[38]  Martti Hallikainen,et al.  HUT snow emission model and its applicability to snow water equivalent retrieval , 1999, IEEE Trans. Geosci. Remote. Sens..

[39]  Charles S. Zender,et al.  Linking snowpack microphysics and albedo evolution , 2006 .

[40]  Alan R. Gillespie,et al.  Spatial relationships between snow contaminant content, grain size, and surface temperature from multispectral images of Mt. Rainier, Washington (USA) , 2003 .

[41]  Julienne C. Stroeve,et al.  Development and validation of a snow albedo algorithm for the MODIS instrument , 2002, Annals of Glaciology.

[42]  P. Reich,et al.  Relationships of leaf dark respiration to leaf nitrogen , specific and leaf life-span : a test across biomes and functional groups leaf area , 1998 .

[43]  Martti Hallikainen,et al.  Comparison of algorithms for retrieval of snow water equivalent from Nimbus-7 SMMR data in Finland , 1992, IEEE Trans. Geosci. Remote. Sens..

[44]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[45]  R. Koster,et al.  Assessing the Impact of Horizontal Error Correlations in Background Fields on Soil Moisture Estimation , 2003 .

[46]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[47]  Lifeng Luo,et al.  Snow process modeling in the north american Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent : GEWEX Continental-Scale International Project, Part 3 (GCIP3) , 2003 .

[48]  Piers J. Sellers,et al.  A Simplified Biosphere Model for Global Climate Studies , 1991 .

[49]  F. Dominé,et al.  Grain growth theories and the isothermal evolution of the specific surface area of snow , 2004 .

[50]  Paul R. Houser,et al.  A methodology for snow data assimilation in a land surface model , 2004 .

[51]  Lawrence Dingman,et al.  Elevation: a major influence on the hydrology of New Hampshire and Vermont, USA / L'altitude exerce une influence importante sur l'hydrologie du New Hampshire et du Vermont, Etats-Unis , 1981 .

[52]  Richard K. Moore,et al.  Microwave Remote Sensing , 1999 .

[53]  Zhiliang Zhu,et al.  Forest density mapping in the lower 48 states: A regression procedure. Forest Service research paper , 1994 .

[54]  Michel Fily,et al.  Comparison of in situ and Landsat Thematic Mapper derived snow grain characteristics in the alps , 1997 .

[55]  R. Jordan A One-dimensional temperature model for a snow cover : technical documentation for SNTHERM.89 , 1991 .

[56]  Yongkang Xue,et al.  Impact of parameterizations in snow physics and interface processes on the simulation of snow cover and runoff at several cold region sites , 2003 .

[57]  D. Hall,et al.  Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data , 1995 .

[58]  Steven A. Margulis,et al.  Feasibility Test of Multifrequency Radiometric Data Assimilation to Estimate Snow Water Equivalent , 2006 .

[59]  C. Mätzler,et al.  Technical note: Relief effects for passive microwave remote sensing , 2000 .

[60]  Paul E. Green,et al.  Measurement and Data Analysis , 1970 .