Soluble Fas ligand and transforming growth factor beta2 in the aqueous humor of patients with endothelial immune reactions after penetrating keratoplasty.

BACKGROUND Excellent long-term prognosis of penetrating corneal grafts has been explained by the immunological privilege of the cornea and the anterior chamber. In animal models the secretion of transforming growth factor beta(2) (TGF-beta(2)) into the anterior chamber and the expression of the Fas ligand on corneal endothelial cells were identified as important for the integrity of the immunological privilege. OBJECTIVE To determine the TGF-beta(2) and soluble Fas ligand (sFasL) levels in the aqueous humor of patients after penetrating keratoplasty (PK) who have and who do not have immune reactions. METHODS Anterior chamber puncture was performed in 13 patients who had a cataract without PK (group 1), in 31 patients after PK who did not have immune reactions (group 2), and in 12 patients after PK newly diagnosed as having endothelial immune reactions (group 3). Total TGF-beta(2) and sFasL were determined via enzyme-linked immunosorbent assay. RESULTS Transforming growth factor beta(2) was detected in all patients, irrespective of the underlying condition; there was no difference in TGF-beta(2) levels between the different groups (P =.89, analysis of variance). None of the patients in group 1, 11 of 31 patients in group 2, and 8 of 12 patients in group 3 had detectable sFasL concentrations (P =.002, chi(2) test). Soluble Fas ligand averaged (mean [SD]) 20.8 (31.1) pg/mL in group 2, and 38.1 (33.2) pg/mL (P<.01, analysis of variance) in group 3. CONCLUSIONS It appears that total TGF-beta(2) is maintained at high steady-state levels, while the level of sFasL is up-regulated in patients who underwent PK, particularily in the advent of graft rejection.

[1]  D. Böhringer,et al.  Regressionsanalyse des idiopatischen Endothelzellverlustes nach perforierender Normalrisiko-Keratoplastik: Grundlage für die Langzeitanalyse von Endothelschädigungsfaktoren in einer retrospektiven klinischen Studie , 2001 .

[2]  D. Larkin,et al.  Cytokine and chemokine expression kinetics after corneal transplantation. , 2000, Transplantation.

[3]  M. Mochizuki,et al.  Soluble Fas ligand and soluble Fas in ocular fluid of patients with uveitis , 2000, The British journal of ophthalmology.

[4]  S. Yamagami,et al.  IL-6 antagonizes TGF-beta and abolishes immune privilege in eyes with endotoxin-induced uveitis. , 2000, Investigative ophthalmology & visual science.

[5]  B. Seitz,et al.  [Regression analysis of corneal endothelium after nonmechanical penetrating keratoplasty]. , 2000, Klinische Monatsblatter fur Augenheilkunde.

[6]  S. Moe,et al.  Opposing Effects of Transmembrane and Soluble FAS Ligand Expression on Inflammation and Tumor Cell Survival , 2000, The Journal of experimental medicine.

[7]  S. Yamagami,et al.  Analysis of Immunomodulatory Activities of Aqueous Humor from Eyes of Mice with Experimental Autoimmune Uveitis1 , 2000, The Journal of Immunology.

[8]  J. Streilein,et al.  Effects of experimental ocular inflammation on ocular immune privilege. , 1999, Investigative ophthalmology & visual science.

[9]  J. Streilein,et al.  Induction of anterior chamber-associated immune deviation by corneal allografts placed in the anterior chamber. , 1997, Investigative ophthalmology & visual science.

[10]  J. Streilein,et al.  Induction of donor-specific ACAID can prolong orthotopic corneal allograft survival in "high-risk" eyes. , 1997, Current eye research.

[11]  K. Okumura,et al.  Role of Fas-Fas ligand interactions in the immunorejection of allogeneic mouse corneal transplants. , 1997, Transplantation.

[12]  T. Reinhard,et al.  Akute und chronische Immunreaktionen nach perforierender Keratoplastik mit normalem Immunrisiko* , 1997 .

[13]  J. Pepose,et al.  CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. , 1997, The Journal of clinical investigation.

[14]  J. Niederkorn,et al.  Anterior chamber-associated immune deviation promotes corneal allograft survival. , 1996, Investigative ophthalmology & visual science.

[15]  A. H. Drummond,et al.  Fas ligand in human serum , 1996, Nature Medicine.

[16]  J. Niederkorn,et al.  Anterior Chamber-Associated Immune Deviation (ACAID) promotes corneal allograft survival , 1996 .

[17]  D. Green,et al.  Fas Ligand-Induced Apoptosis as a Mechanism of Immune Privilege , 1995, Science.

[18]  J. Wayne Streilein,et al.  Unraveling Immune Privilege , 1995, Science.

[19]  J V Siertsema,et al.  Comparative study of three semiautomated specular microscopes , 1995, Journal of cataract and refractive surgery.

[20]  S. Nagata,et al.  The Fas death factor , 1995, Science.

[21]  Masato Tanaka,et al.  Expression of the functional soluble form of human fas ligand in activated lymphocytes. , 1995, The EMBO journal.

[22]  R. Tripathi,et al.  Aqueous Humor in Glaucomatous Eyes Contains an Increased Level of TGF-β2 , 1994 .

[23]  H. Kawashima,et al.  Corneal endothelial cells inhibit T cell proliferation by blocking IL-2 production. , 1994, Journal of immunology.

[24]  R. Tripathi,et al.  Trabecular Cells Express the TGF-β2 Gene and Secrete the Cytokine , 1994 .

[25]  N. Peress,et al.  TGF-beta 2 and TGF-beta 3 immunoreactivity within the ciliary epithelium [corrected]. , 1994, Investigative ophthalmology & visual science.

[26]  S. Wilson,et al.  Epidermal growth factor and its receptor, basic fibroblast growth factor, transforming growth factor beta-1, and interleukin-1 alpha messenger RNA production in human corneal endothelial cells. , 1991, Investigative Ophthalmology and Visual Science.

[27]  R. Granstein,et al.  Production of latent transforming growth factor-beta and other inhibitory factors by cultured murine iris and ciliary body cells. , 1991, Current eye research.

[28]  D. Danielpour,et al.  Identification of transforming growth factor-beta as an immunosuppressive factor in aqueous humor. , 1991, Investigative ophthalmology & visual science.

[29]  H. Thiel,et al.  The use of cyclosporine in high-risk keratoplasty. , 1989, American journal of ophthalmology.

[30]  J. Niederkorn,et al.  CHARACTERISTICS OF REJECTION OF ORTHOTOPIC CORNEAL ALLOGRAFTS IN THE RAT , 1988, Transplantation.

[31]  F. Hoffmann [Suture technique for perforating keratoplasty (author's transl)]. , 1976, Klinische Monatsblatter fur Augenheilkunde.

[32]  A. Silverstein,et al.  Transplantation and rejection of individual cell layers of the cornea. , 1969, Investigative ophthalmology.

[33]  H. Link,et al.  Transforming Growth Factor β (TGFβ) , 1998 .

[34]  J. Hill,et al.  Systemic cyclosporine in high-risk keratoplasty. Short- versus long-term therapy. , 1994, Ophthalmology.

[35]  H. Freyler,et al.  Nahttechnik bei perforierender Keratoplastik - eine Vergleichsstudie* , 1980 .

[36]  G. Offret,et al.  Les greffes de la cornée , 1949 .