A priori computation of the number of surface subdivision levels
暂无分享,去创建一个
[1] Jörg Peters,et al. Optimized refinable enclosures of multivariate polynomial pieces , 2001, Comput. Aided Geom. Des..
[2] M. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1978 .
[3] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[4] Jörg Peters,et al. Sharp, quantitative bounds on the distance between a polynomial piece and its Bézier control polygon , 1999, Comput. Aided Geom. Des..
[5] Tony DeRose,et al. Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.
[6] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[7] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[8] Ashish Amresh,et al. Adaptive Subdivision Schemes for Triangular Meshes , 2003 .
[9] Heinrich Müller,et al. Adaptive subdivision curves and surfaces , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).
[10] Peter Schröder,et al. Interactive multiresolution mesh editing , 1997, SIGGRAPH.
[11] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[12] Jun-Hai Yong,et al. Subdivision Depth Computation for Catmull-Clark Subdivision Surfaces , 2006 .
[13] Denis Zorin,et al. Evaluation of piecewise smooth subdivision surfaces , 2002, The Visual Computer.
[14] Sven Havemann,et al. Subdivision Surface Tesselation on the Fly using a versatile Mesh Data Structure , 2000, Comput. Graph. Forum.
[15] Myung-Soo Kim. Intersecting surfaces of special types , 1999, Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications.