A priori computation of the number of surface subdivision levels

Subdivision surfaces are a powerful model widely used in geometric modelling. Controlling the accuracy of the approximation of the limit surface often involves the computation of the distance between the control mesh and the limit surface. Nevertheless, the a priori level (or depth) of subdivision based on a distance criterion has not yet been expressed. The goal of this paper is thus to compute this level. Then the surface can be subdivided with a given accuracy without any distance computation between the subdivision surface and the limit surface.

[1]  Jörg Peters,et al.  Optimized refinable enclosures of multivariate polynomial pieces , 2001, Comput. Aided Geom. Des..

[2]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[3]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[4]  Jörg Peters,et al.  Sharp, quantitative bounds on the distance between a polynomial piece and its Bézier control polygon , 1999, Comput. Aided Geom. Des..

[5]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[6]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[7]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[8]  Ashish Amresh,et al.  Adaptive Subdivision Schemes for Triangular Meshes , 2003 .

[9]  Heinrich Müller,et al.  Adaptive subdivision curves and surfaces , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).

[10]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[11]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[12]  Jun-Hai Yong,et al.  Subdivision Depth Computation for Catmull-Clark Subdivision Surfaces , 2006 .

[13]  Denis Zorin,et al.  Evaluation of piecewise smooth subdivision surfaces , 2002, The Visual Computer.

[14]  Sven Havemann,et al.  Subdivision Surface Tesselation on the Fly using a versatile Mesh Data Structure , 2000, Comput. Graph. Forum.

[15]  Myung-Soo Kim Intersecting surfaces of special types , 1999, Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications.