Studies were carried out to investigate the metabolism of senecionine by human liver microsomes and the role of human cytochrome P450IIIA4 in this process. Human liver microsomes metabolized senecionine to two major products, (+/-)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP) and senecionine N-oxide. The rates of product formation (DHP and senecionine N-oxide) varied widely with the microsomal samples tested. There was a 30-fold difference in DHP formation and a 25-fold difference in N-oxidation between the poorest metabolizer and the highest metabolizer of senecionine. The conversion of senecionine to DHP and senecionine N-oxide in human liver microsomes was markedly inhibited by the mechanism-based inactivators of P450IIIA4, gestodene and triacetyloleandomycin. Anti-P450IIIA4 IgG, at a concentration of 1 mg/nmol of P450, was found to inhibit completely the formation of DHP and senecionine N-oxide in human liver microsomes (HL101) having low activity toward senecionine. At 5 mg IgG/nmol P450, anti-P450IIIA4 inhibited 90 and 84% respectively of the formation of DHP and senecionine N-oxide in liver microsomes (HL110) with the highest activity toward senecionine. The formation of DHP or senecionine N-oxide was highly correlated with the amount of P450IIIA4 measured in the microsomes using polyclonal anti-P450IIIA4 IgG. The rate of DHP production also had a strong correlation with the rate of senecionine N-oxide formation (r = 0.999) and with the rate of nifedipine oxidation (r = 0.998). Our present studies provide evidence that P450IIIA4 is the major enzyme catalyzing the bioactivation (DHP formation) and detoxication (senecionine N-oxide formation) of senecionine in human liver.