Introducing Pareto Minimal Correction Subsets

A Minimal Correction Subset (MCS) of an unsatisfiable constraint set is a minimal subset of constraints that, if removed, makes the constraint set satisfiable. MCSs enjoy a wide range of applications, one of them being approximate solutions to constrained optimization problems. However, existing work on applying MCS enumeration to optimization problems focuses on the single-objective case.

[1]  Joao Marques-Silva,et al.  Literal-Based MCS Extraction , 2015, IJCAI.

[2]  Jing Xu,et al.  Multi-Objective Virtual Machine Placement in Virtualized Data Center Environments , 2010, 2010 IEEE/ACM Int'l Conference on Green Computing and Communications & Int'l Conference on Cyber, Physical and Social Computing.

[3]  Xiuqi Li,et al.  Virtual machine consolidated placement based on multi-objective biogeography-based optimization , 2016, Future Gener. Comput. Syst..

[4]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[5]  Barry O'Sullivan,et al.  Generating Corrective Explanations for Interactive Constraint Satisfaction , 2005, CP.

[6]  Fahiem Bacchus,et al.  Relaxation Search: A Simple Way of Managing Optional Clauses , 2014, AAAI.

[7]  Éric Grégoire,et al.  An Experimentally Efficient Method for (MSS, CoMSS) Partitioning , 2014, AAAI.

[8]  Nikolaj Bjørner,et al.  νZ - An Optimizing SMT Solver , 2015, TACAS.

[9]  Alexander Felfernig,et al.  An efficient diagnosis algorithm for inconsistent constraint sets , 2011, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[10]  Felix Salfner,et al.  Downtime Analysis of Virtual Machine Live Migration , 2011 .

[11]  Mikolás Janota,et al.  Towards efficient optimization in package management systems , 2014, ICSE.

[12]  Vasco M. Manquinho,et al.  Algorithms for Weighted Boolean Optimization , 2009, SAT.

[13]  Eliezer L. Lozinskii,et al.  Consistent subsets of inconsistent systems: structure and behaviour , 2003, J. Exp. Theor. Artif. Intell..

[14]  Armin Biere,et al.  Managing SAT inconsistencies with HUMUS , 2012, VaMoS '12.

[15]  E. L. Ulungu,et al.  Multi‐objective combinatorial optimization problems: A survey , 1994 .

[16]  Mikolás Janota,et al.  Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence On Computing Minimal Correction Subsets , 2022 .

[17]  James Bailey,et al.  Discovery of Minimal Unsatisfiable Subsets of Constraints Using Hitting Set Dualization , 2005, PADL.

[18]  Daniel Le Berre,et al.  The Sat4j library, release 2.2 , 2010, J. Satisf. Boolean Model. Comput..

[19]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[20]  Wolf-Dietrich Weber,et al.  Power provisioning for a warehouse-sized computer , 2007, ISCA '07.

[21]  Vilfredo Pareto,et al.  Manuale di economia politica , 1965 .

[22]  Rina Dechter,et al.  On computing minimal models , 1993, Annals of Mathematics and Artificial Intelligence.

[23]  Ulrich Junker,et al.  QUICKXPLAIN: Preferred Explanations and Relaxations for Over-Constrained Problems , 2004, AAAI.

[24]  Derek Rayside,et al.  The Guided Improvement Algorithm for Exact, General-Purpose, Many-Objective Combinatorial Optimization , 2009 .

[25]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..