Computational Methods for MicroRNA Target Prediction

MicroRNAs (miRNAs) have been identified as one of the most important molecules that regulate gene expression in various organisms. miRNAs are short, 21–23 nucleotide-long, single stranded RNA molecules that bind to 3' untranslated regions (3' UTRs) of their target mRNAs. In general, they silence the expression of their target genes via degradation of the mRNA or by translational repression. The expression of miRNAs, on the other hand, also varies in different tissues based on their functions. It is significantly important to predict the targets of miRNAs by computational approaches to understand their effects on the regulation of gene expression. Various computational methods have been generated for miRNA target prediction but the resulting lists of candidate target genes from different algorithms often do not overlap. It is crucial to adjust the bioinformatics tools for more accurate predictions as it is equally important to validate the predicted target genes experimentally.

[1]  M. Waterman,et al.  A new algorithm for best subsequence alignments with application to tRNA-rRNA comparisons. , 1987, Journal of molecular biology.

[2]  M. Zuker On finding all suboptimal foldings of an RNA molecule. , 1989, Science.

[3]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[4]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[5]  C Burks,et al.  The K box, a conserved 3' UTR sequence motif, negatively regulates accumulation of enhancer of split complex transcripts. , 1998, Development.

[6]  R. Lehmann,et al.  Targeted mRNA degradation by double-stranded RNA in vitro. , 1999, Genes & development.

[7]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[8]  P. Schuster,et al.  Complete suboptimal folding of RNA and the stability of secondary structures. , 1999, Biopolymers.

[9]  G. Dreyfuss,et al.  Transport of Proteins and RNAs in and out of the Nucleus , 1999, Cell.

[10]  B. Bass,et al.  A Role for the RNase III Enzyme DCR-1 in RNA Interference and Germ Line Development in Caenorhabditis elegans , 2001, Science.

[11]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[12]  G. Hutvagner,et al.  A microRNA in a Multiple-Turnover RNAi Enzyme Complex , 2002, Science.

[13]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[14]  C. Llave,et al.  Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA , 2002, Science.

[15]  Philip Lijnzaad,et al.  The Ensembl genome database project , 2002, Nucleic Acids Res..

[16]  L. Pachter,et al.  Strategies and tools for whole-genome alignments. , 2002, Genome research.

[17]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[18]  S. Jayasena,et al.  Functional siRNAs and miRNAs Exhibit Strand Bias , 2003, Cell.

[19]  V. Ambros MicroRNA Pathways in Flies and Worms Growth, Death, Fat, Stress, and Timing , 2003, Cell.

[20]  Nicholas L. Bray,et al.  AVID: A global alignment program. , 2003, Genome research.

[21]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[22]  D. Marks,et al.  The small RNA profile during Drosophila melanogaster development. , 2003, Developmental cell.

[23]  Chiara Gamberi,et al.  The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. , 2003, Developmental cell.

[24]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[25]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[26]  Z. Xie,et al.  Negative Feedback Regulation of Dicer-Like1 in Arabidopsis by microRNA-Guided mRNA Degradation , 2003, Current Biology.

[27]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[28]  G. Ruvkun,et al.  A uniform system for microRNA annotation. , 2003, RNA.

[29]  Terrence S. Furey,et al.  The UCSC Genome Browser Database , 2003, Nucleic Acids Res..

[30]  V. Ambros,et al.  MicroRNAs and Other Tiny Endogenous RNAs in C. elegans , 2003, Current Biology.

[31]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[32]  A. Hatzigeorgiou,et al.  A combined computational-experimental approach predicts human microRNA targets. , 2004, Genes & development.

[33]  E. Lai Predicting and validating microRNA targets , 2004, Genome Biology.

[34]  Sam Griffiths-Jones,et al.  The microRNA Registry , 2004, Nucleic Acids Res..

[35]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[36]  Ranit Aharonov,et al.  MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. , 2004, Genome research.

[37]  F. Slack,et al.  Architecture of a validated microRNA::target interaction. , 2004, Chemistry & biology.

[38]  Terry Gaasterland,et al.  Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets , 2004, Genome Biology.

[39]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[40]  Kuan-Teh Jeang,et al.  HIV-1 encoded candidate micro-RNAs and their cellular targets , 2004, Retrovirology.

[41]  B. Cullen,et al.  Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.

[42]  R. Plasterk,et al.  Substrate requirements for let-7 function in the developing zebrafish embryo. , 2004, Nucleic acids research.

[43]  P. Macdonald,et al.  Prediction and verification of microRNA targets by MovingTargets, a highly adaptable prediction method , 2005, BMC Genomics.

[44]  Anton J. Enright,et al.  Identification of Virus-Encoded MicroRNAs , 2004, Science.

[45]  Nikolaus Rajewsky,et al.  Computational identification of microRNA targets , 2004, Genome Biology.

[46]  P. Rouzé,et al.  Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[47]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[48]  D. Bartel,et al.  Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. , 2004, Molecular cell.

[49]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[50]  Y. Li,et al.  Incorporating structure to predict microRNA targets. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Xiao Li,et al.  Computational detection of microRNAs targeting transcription factor genes in Arabidopsis thaliana , 2005, Comput. Biol. Chem..

[52]  Byoung-Tak Zhang,et al.  A Kernel Method for MicroRNA Target Prediction Using Sensible Data and Position-Based Features , 2005, 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology.

[53]  Kristin C. Gunsalus,et al.  microRNA Target Predictions across Seven Drosophila Species and Comparison to Mammalian Targets , 2005, PLoS Comput. Biol..

[54]  Robert B. Russell,et al.  Principles of MicroRNATarget Recognition , 2005 .

[55]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[56]  Byoung-Tak Zhang,et al.  miTarget: microRNA target gene prediction using a support vector machine , 2006, BMC Bioinformatics.

[57]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[58]  Olivier Elemento,et al.  Revealing Posttranscriptional Regulatory Elements Through Network-Level Conservation , 2005, PLoS Comput. Biol..

[59]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[60]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[61]  Vesselin Baev,et al.  MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence , 2005, Nucleic Acids Res..

[62]  D. Bartel,et al.  Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. , 2005, RNA.

[63]  Isaac Bentwich Available online , 2005 .

[64]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[65]  Peter F Stadler,et al.  Fast and reliable prediction of noncoding RNAs , 2005, Proc. Natl. Acad. Sci. USA.

[66]  Chris Sander,et al.  The developmental miRNA profiles of zebrafish as determined by small RNA cloning. , 2005, Genes & development.

[67]  A. Saïb,et al.  A Cellular MicroRNA Mediates Antiviral Defense in Human Cells , 2005, Science.

[68]  James R. Brown,et al.  A computational view of microRNAs and their targets. , 2005, Drug discovery today.

[69]  Scott A. Givan,et al.  ASRP: the Arabidopsis Small RNA Project Database , 2004, Nucleic Acids Res..

[70]  Phillip D Zamore,et al.  microPrimer: the biogenesis and function of microRNA , 2005, Development.

[71]  Ola Snøve,et al.  Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. , 2005, RNA.

[72]  Vinod Scaria,et al.  Targets for human encoded microRNAs in HIV genes. , 2005, Biochemical and biophysical research communications.

[73]  Yuanji Zhang,et al.  miRU: an automated plant miRNA target prediction server , 2005, Nucleic Acids Res..

[74]  A. Hatzigeorgiou,et al.  TarBase: A comprehensive database of experimentally supported animal microRNA targets. , 2005, RNA.

[75]  G. De Micheli,et al.  Computational identification of microRNAs and their targets. , 2006, Birth defects research. Part C, Embryo today : reviews.

[76]  B. Cullen,et al.  The Biogenesis and Function of MicroRNAs , 2006 .

[77]  H. Vaucheret Post-transcriptional small RNA pathways in plants: mechanisms and regulations. , 2006, Genes & development.

[78]  Hsien-Da Huang,et al.  miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes , 2005, Nucleic Acids Res..

[79]  R. Eils,et al.  Argonaute—a database for gene regulation by mammalian microRNAs , 2005, BMC Bioinformatics.

[80]  Chris Sander,et al.  Prediction of human microRNA targets. , 2006, Methods in molecular biology.

[81]  Mihaela Zavolan,et al.  Inference of miRNA targets using evolutionary conservation and pathway analysis , 2007, BMC Bioinformatics.

[82]  Jan Krüger,et al.  RNAhybrid: microRNA target prediction easy, fast and flexible , 2006, Nucleic Acids Res..

[83]  D. Bartel,et al.  MicroRNAS and their regulatory roles in plants. , 2006, Annual review of plant biology.

[84]  A. Hatzigeorgiou,et al.  A guide through present computational approaches for the identification of mammalian microRNA targets , 2006, Nature Methods.

[85]  Yvonne Tay,et al.  A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes , 2006, Cell.

[86]  Masaru Tomita,et al.  Computational analysis of microRNA targets in Caenorhabditis elegans. , 2006, Gene.

[87]  Oliver Hobert,et al.  Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions , 2006, Nature Structural &Molecular Biology.

[88]  Robert Giegerich,et al.  GUUGle: a utility for fast exact matching under RNA complementary rules including G-U base pairing , 2006, Bioinform..

[89]  Prediction of microRNA targets. , 2006, Methods in molecular biology.

[90]  Xiaowei Wang,et al.  Systematic identification of microRNA functions by combining target prediction and expression profiling , 2006, Nucleic acids research.

[91]  Stijn van Dongen,et al.  miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..

[92]  N. Rajewsky microRNA target predictions in animals , 2006, Nature Genetics.

[93]  Colin N. Dewey,et al.  A Genome-Wide Map of Conserved MicroRNA Targets in C. elegans , 2006, Current Biology.

[94]  Martti T. Tammi,et al.  MicroTar: predicting microRNA targets from RNA duplexes , 2006, BMC Bioinformatics.

[95]  G. Meister,et al.  Identification of Human microRNA Targets From Isolated Argonaute Protein Complexes , 2007, RNA biology.

[96]  Brendan J. Frey,et al.  Bayesian Inference of MicroRNA Targets from Sequence and Expression Data , 2007, J. Comput. Biol..

[97]  F. Slack,et al.  The let-7 microRNA represses cell proliferation pathways in human cells. , 2007, Cancer research.

[98]  Louise C. Showe,et al.  Naïve Bayes for microRNA target predictions - machine learning for microRNA targets , 2007, Bioinform..

[99]  Ligang Wu,et al.  PolymiRTS Database: linking polymorphisms in microRNA target sites with complex traits , 2006, Nucleic Acids Res..

[100]  J. Steitz,et al.  Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR , 2007, Proceedings of the National Academy of Sciences.

[101]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[102]  Anton J. Enright,et al.  Prediction of microRNA targets. , 2007, Drug discovery today.

[103]  Ola Snøve,et al.  Distance constraints between microRNA target sites dictate efficacy and cooperativity , 2007, Nucleic acids research.

[104]  Jan Gorodkin,et al.  Principles and limitations of computational microRNA gene and target finding. , 2007, DNA and cell biology.

[105]  Boqin Qiang,et al.  Improving the prediction of human microRNA target genes by using ensemble algorithm , 2007, FEBS letters.

[106]  Masaru Tomita,et al.  Computational methods for microRNA target prediction. , 2007, Methods in enzymology.

[107]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[108]  George Easow,et al.  Isolation of microRNA targets by miRNP immunopurification. , 2007, RNA.

[109]  Xiaowei Wang miRDB: a microRNA target prediction and functional annotation database with a wiki interface. , 2008, RNA.

[110]  Eric C. Lai,et al.  Biological principles of microRNA-mediated regulation: shared themes amid diversity , 2008, Nature Reviews Genetics.

[111]  Y. Mo,et al.  Systematic validation of predicted microRNAs for cyclin D1 , 2009, BMC Cancer.

[112]  Yvonne Tay,et al.  MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation , 2008, Nature.

[113]  Jidong Liu,et al.  Control of protein synthesis and mRNA degradation by microRNAs. , 2008, Current opinion in cell biology.

[114]  Martin M Matzuk,et al.  A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions. , 2008, RNA.

[115]  Sanghyuk Lee,et al.  miRGator: an integrated system for functional annotation of microRNAs , 2007, Nucleic Acids Res..

[116]  Yu-Ping Wang,et al.  MiRTif: a support vector machine-based microRNA target interaction filter , 2008, BMC Bioinformatics.

[117]  Joshua J. Forman,et al.  A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence , 2008, Proceedings of the National Academy of Sciences.

[118]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[119]  Chao Cheng,et al.  Inferring MicroRNA Activities by Combining Gene Expression with MicroRNA Target Prediction , 2008, PloS one.

[120]  Dang D. Long,et al.  mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein–enriched transcripts , 2008, Nature Methods.

[121]  Masato Nagino,et al.  let-7 regulates Dicer expression and constitutes a negative feedback loop. , 2008, Carcinogenesis.

[122]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[123]  R. Place,et al.  MicroRNA-373 induces expression of genes with complementary promoter sequences , 2008, Proceedings of the National Academy of Sciences.

[124]  U. A. Ørom,et al.  MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. , 2008, Molecular cell.

[125]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[126]  I. Rigoutsos New tricks for animal microRNAS: targeting of amino acid coding regions at conserved and nonconserved sites. , 2009, Cancer research.

[127]  Tongbin Li,et al.  miRecords: an integrated resource for microRNA–target interactions , 2008, Nucleic Acids Res..

[128]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[129]  Je-Gun Joung,et al.  Computational identification of condition-specific miRNA targets based on gene expression profiles and sequence information , 2009, BMC Bioinformatics.

[130]  M. Kiebler,et al.  Faculty Opinions recommendation of Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. , 2009 .

[131]  Nectarios Koziris,et al.  Accurate microRNA target prediction correlates with protein repression levels , 2009, BMC Bioinformatics.

[132]  Jie Ding,et al.  Integration of Ranked Lists via Cross Entropy Monte Carlo with Applications to mRNA and microRNA Studies , 2009, Biometrics.

[133]  Lan Jin,et al.  Biological basis for restriction of microRNA targets to the 3' untranslated region in mammalian mRNAs. , 2009, Nature structural & molecular biology.

[134]  Yann Ponty,et al.  VARNA: Interactive drawing and editing of the RNA secondary structure , 2009, Bioinform..

[135]  C. Barbato,et al.  Computational Challenges in miRNA Target Predictions: To Be or Not to Be a True Target? , 2009, Journal of biomedicine & biotechnology.

[136]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[137]  P. Linsley,et al.  The therapeutic potential of microRNA modulation. , 2010, Discovery medicine.

[138]  Xianghuo He,et al.  Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region , 2010, Oncogene.

[139]  Michel Georges,et al.  Patrocles: a database of polymorphic miRNA-mediated gene regulation in vertebrates , 2008, Nucleic Acids Res..

[140]  M. Peter,et al.  Targeting of mRNAs by multiple miRNAs: the next step , 2010, Oncogene.

[141]  Patrick Xuechun Zhao,et al.  psRNATarget: a plant small RNA target analysis server , 2011, Nucleic Acids Res..

[142]  C. Bracken,et al.  Experimental strategies for microRNA target identification , 2011, Nucleic acids research.

[143]  M. Rattray,et al.  Computational Prediction of Intronic microRNA Targets using Host Gene Expression Reveals Novel Regulatory Mechanisms , 2011, PloS one.

[144]  E. Izaurralde,et al.  Gene silencing by microRNAs: contributions of translational repression and mRNA decay , 2011, Nature Reviews Genetics.

[145]  Mohsen Khorshid,et al.  CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins , 2010, Nucleic Acids Res..

[146]  Andrew E. Bruno,et al.  miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3'UTRs of human genes , 2012, BMC Genomics.

[147]  Chi-Ying F. Huang,et al.  miRTarBase: a database curates experimentally validated microRNA–target interactions , 2010, Nucleic Acids Res..

[148]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[149]  Sean P Ryder,et al.  Argonaute protein identity and pairing geometry determine cooperativity in mammalian RNA silencing. , 2011, RNA.

[150]  Norbert Gretz,et al.  miRWalk - Database: Prediction of possible miRNA binding sites by "walking" the genes of three genomes , 2011, J. Biomed. Informatics.

[151]  Nikolaus Rajewsky,et al.  The Impact of miRNA Target Sites in Coding Sequences and in 3′UTRs , 2011, PloS one.

[152]  D. Bartel,et al.  Weak Seed-Pairing Stability and High Target-Site Abundance Decrease the Proficiency of lsy-6 and Other miRNAs , 2011, Nature Structural &Molecular Biology.

[153]  Andrew D. Smith,et al.  Site identification in high-throughput RNA-protein interaction data , 2012, Bioinform..

[154]  Nectarios Koziris,et al.  TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support , 2011, Nucleic Acids Res..

[155]  A. Pasquinelli MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship , 2012, Nature Reviews Genetics.

[156]  Ivo Grosse,et al.  Functional microRNA targets in protein coding sequences , 2012, Bioinform..

[157]  Christoph Dieterich,et al.  doRiNA: a database of RNA interactions in post-transcriptional regulation , 2011, Nucleic Acids Res..

[158]  Rongguo Fu,et al.  Advances in the Techniques for the Prediction of microRNA Targets , 2013, International journal of molecular sciences.

[159]  Martin Reczko,et al.  DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows , 2013, Nucleic Acids Res..

[160]  Fast and effective? , 2013, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[161]  Jeffrey A. Thompson,et al.  Common features of microRNA target prediction tools , 2014, Front. Genet..

[162]  Javier F. Palatnik,et al.  comTAR: a web tool for the prediction and characterization of conserved microRNA targets in plants , 2014, Bioinform..

[163]  Jun Lu,et al.  STarMir: a web server for prediction of microRNA binding sites , 2014, Nucleic Acids Res..

[164]  Hsien-Da Huang,et al.  miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions , 2013, Nucleic Acids Res..

[165]  Lingling Hu,et al.  miRClassify: An advanced web server for miRNA family classification and annotation , 2014, Comput. Biol. Medicine.