Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics.

Interfacing functional proteins with solid supports for device applications is a promising route to possible applications in bio-electronics, -sensors, and -optics. Various possible applications of bacteriorhodopsin (bR) have been explored and reviewed since the discovery of bR. This tutorial review discusses bR as a medium for biomolecular optoelectronics, emphasizing ways in which it can be interfaced, especially as a thin film, solid-state current-carrying electronic element.

[1]  Chang Ming Li,et al.  Stationary current generated from photocycle of a hybrid bacteriorhodopsin/quantum dot bionanosystem , 2007 .

[2]  J Samitier,et al.  Electron transport through supported biomembranes at the nanoscale by conductive atomic force microscopy , 2007, Nanotechnology.

[3]  David Cahen,et al.  Bacteriorhodopsin‐Monolayer‐Based Planar Metal–Insulator–Metal Junctions via Biomimetic Vesicle Fusion: Preparation, Characterization, and Bio‐optoelectronic Characteristics , 2007 .

[4]  M. Sheves,et al.  Gold-nanoparticle-enhanced current transport through nanometer-scale insulating layers. , 2006, Angewandte Chemie.

[5]  T. He,et al.  Bacteriorhodopsin (bR) as an electronic conduction medium: current transport through bR-containing monolayers. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[6]  M. Sheves,et al.  Chemically induced enhancement of the opto-electronic response of Halobacterium purple membrane monolayer. , 2006, Chemical communications.

[7]  Q. Chi,et al.  Long-range protein electron transfer observed at the single-molecule level: In situ mapping of redox-gated tunneling resonance. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Yossi Rosenwaks,et al.  Fabrication of a Photoelectronic Device by Direct Chemical Binding of the Photosynthetic Reaction Center Protein to Metal Surfaces , 2005 .

[9]  Christian Horn,et al.  Photocurrents generated by bacteriorhodopsin adsorbed on nano-black lipid membranes. , 2005, Biophysical journal.

[10]  M. Sheves,et al.  Bacteriorhodopsin Monolayers for Optoelectronics: Orientation and Photoelectric Response on Solid Supports , 2005 .

[11]  A. Bramanti,et al.  Towards Protein Field‐Effect Transistors: Report and Model of a Prototype , 2005 .

[12]  Itamar Willner,et al.  Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. , 2004, Angewandte Chemie.

[13]  K. S. Narayan,et al.  Opto-electrical processes in a conducting polymer-bacteriorhodopsin system. , 2004, Biosensors & bioelectronics.

[14]  Yuyuan Tian,et al.  Conductance titration of single-peptide molecules. , 2004, Journal of the American Chemical Society.

[15]  K. S. Narayan,et al.  Voltage-controlled spectral tuning of photoelectric signals in a conducting polymer-bacteriorhodopsin device , 2003 .

[16]  P. Bhattacharya,et al.  Direct measurement of the photoelectric response time of bacteriorhodopsin via electro-optic sampling. , 2003, Biophysical journal.

[17]  R. Birge,et al.  Humidity-dependent open-circuit photovoltage from a bacteriorhodopsin/indium tin oxide bioelectronic heterostructure , 2003 .

[18]  R. Claus,et al.  High-performance photovoltaic behavior of oriented purple membrane polymer composite films. , 2003, Biophysical journal.

[19]  L. Andolfi,et al.  Solid‐State Molecular Rectifier Based on Self‐Organized Metalloproteins , 2002, cond-mat/0207675.

[20]  Pallab Bhattacharya,et al.  Monolithically integrated bacteriorhodopsin-GaAs field-effect transistor photoreceiver. , 2002, Optics letters.

[21]  M. Sheves,et al.  Light-induced hydrolysis and rebinding of nonisomerizable bacteriorhodopsin pigment. , 2002, Biophysical journal.

[22]  P. Bhattacharya,et al.  Photoconduction in bacteriorhodopsin/GaAs heterostructures , 2001 .

[23]  Norbert Hampp,et al.  Bacteriorhodopsin as a Photochromic Retinal Protein for Optical Memories. , 2000, Chemical reviews.

[24]  A. Shanzer,et al.  Molecular control over Au/GaAs diodes , 2000, Nature.

[25]  LiMeiling,et al.  The Fast Photovoltaic Response from Multilayer by Alternate Layer-by-layer Assembly of Polycation and Bacteriorhodopsin , 2000 .

[26]  F. Hong Interfacial photochemistry of retinal proteins , 1999 .

[27]  Leslie M. Loew,et al.  Second-harmonic generation of biological interfaces: probing the membrane protein bacteriorhodopsin and imaging membrane potential around GFP molecules at specific sites in neuronal cells of C. elegans , 1999 .

[28]  Jayant Kumar,et al.  Bacteriorhodopsin Thin-Film AssembliesImmobilization, Properties, and Applications , 1999 .

[29]  Jeong-Woo Choi,et al.  Photocurrent of bacteriorhodopsin films deposited by electrophoretic method , 1998 .

[30]  Ida Lee,et al.  Biomolecular Electronics: Vectorial Arrays of Photosynthetic Reaction Centers , 1997 .

[31]  H. Galla,et al.  Proton translocation across bacteriorhodopsin containing solid supported lipid bilayers , 1997 .

[32]  M. Sheves,et al.  Evidence that aspartate-85 has a higher pK(a) in all-trans than in 13-cisbacteriorhodopsin. , 1996, Biophysical journal.

[33]  Tsutomu Miyasaka,et al.  Molecular organization of bacterio‐ rhodopsin films in optoelectronic devices , 1995 .

[34]  C. Bustamante,et al.  Physical parameters that control the imaging of purple membranes with the scanning tunneling microscope , 1995 .

[35]  F. Hong,et al.  Analysis of the d.c. photoelectric signal from model bacteriorhodopsin membranes: d.c. photoconductivity determination by the null current method and the effect of proton ionophores , 1995 .

[36]  T. Miyasaka,et al.  Antibody-Mediated Bacteriorhodopsin Orientation for Molecular Device Architectures , 1994, Science.

[37]  Ricardo Garcia Nanometer‐scale modification of biological membranes by field emission scanning tunneling microscopy , 1994 .

[38]  Keng S. Liang,et al.  Stabilization of the membrane protein bacteriorhodopsin to 140 °C in two-dimensional films , 1993, Nature.

[39]  H. Lemmetyinen,et al.  Bacteriorhodopsin in Langmuir-Blodgett films imaged with a scanning tunneling microscope , 1993 .

[40]  J. Lanyi,et al.  Pathways of proton release in the bacteriorhodopsin photocycle. , 1992, Biochemistry.

[41]  T. Miyasaka,et al.  Quantum Conversion and Image Detection by a Bacteriorhodopsin-Based Artificial Photoreceptor , 1992, Science.

[42]  N. Hampp,et al.  Bacteriorhodopsin: a biological material for information processing , 1991, Quarterly Reviews of Biophysics.

[43]  E. Greenbaum Vectorial photocurrents and photoconductivity in metalized chloroplasts , 1990 .

[44]  H W Trissl,et al.  PHOTOELECTRIC MEASUREMENTS OF MEMBRANES , 1990, Photochemistry and photobiology.

[45]  G. Rayfield,et al.  Evidence that the photoelectric response of bacteriorhodopsin occurs in less than 5 picoseconds. , 1990, Biophysical journal.

[46]  V. Markin,et al.  Bacteriorhodopsin: current—voltage characteristics , 1990 .

[47]  A. V. Maximychev,et al.  Oriented purple-membrane films as a probe for studies of the mechanism of bacteriorhodopsin functioning. II. Photoelectric processes , 1987 .

[48]  W. Stoeckenius,et al.  Bacteriorhodopsin and the purple membrane of halobacteria. , 1979, Biochimica et biophysica acta.

[49]  J. Cassim,et al.  Effects of bleaching and regeneration on the purple membrane structure of Halobaterium halobium. , 1977, Biophysical journal.

[50]  R. Henderson,et al.  Three-dimensional model of purple membrane obtained by electron microscopy , 1975, Nature.

[51]  P. Mitchell Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism , 1961, Nature.

[52]  Nikolai Vsevolodov,et al.  Biomolecular Electronics: An Introduction via Photosensitive Proteins , 1998 .

[53]  R. García,et al.  Scanning tunneling microscopy imaging and selective modification of purple membranes , 1997, Int. J. Imaging Syst. Technol..

[54]  J. Lanyi,et al.  The Photocycles of Bacteriorhodopsin , 1995 .

[55]  R. Birge Photophysics and molecular electronic applications of the rhodopsins. , 1990, Annual review of physical chemistry.