Parametrizing Above Guaranteed Values: MaxSat and MaxCut

In this paper we investigate the parameterized complexity of the problems MaxSat and MaxCut using the framework developed by Downey and Fellows. LetGbe an arbitrary graph havingnvertices andmedges, and letfbe an arbitrary CNF formula withmclauses onnvariables. We improve Cai and Chen'sO(22ckcm) time algorithm for determining if at leastkclauses of ac-CNF formulafcan be satisfied; our algorithm runs inO(|f|+k2?k) time for arbitrary formulae and inO(cm+ck?k) time forc-CNF formulae, where ? is the golden ratio(1+5)/2. We also give an algorithm for finding a cut of size at leastk; our algorithm runs inO(m+n+k4k) time. We then argue that the standard parameterization of these problems is unsuitable, because nontrivial situations arise only for large parameter values (k??m/2?), in which range the fixed-parameter tractable algorithms are infeasible. A more meaningful question in the parameterized setting is to ask whether ?m/2?+kclauses can be satisfied, or ?m/2?+kedges can be placed in a cut. We show that these problems remain fixed-parameter tractable even under this parameterization. Furthermore, for up to logarithmic values of the parameter, our algorithms for these versions also run in polynomial time.

[1]  G DowneyRod,et al.  Fixed-Parameter Tractability and Completeness I , 1995 .

[2]  Karl J. Lieberherr,et al.  Complexity of partial satisfaction , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[3]  Madhav V. Marathe,et al.  On Approximation Algorithms for the Minimum Satisfiability Problem , 1996, Inf. Process. Lett..

[4]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[5]  Michael R. Fellows,et al.  The complexity of irredundant sets parameterized by size , 2000, Discret. Appl. Math..

[6]  Mihalis Yannakakis,et al.  On Limited Nondeterminism and the Complexity of the V-C Dimension , 1996, J. Comput. Syst. Sci..

[7]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[8]  S. Srinivasa Rao,et al.  A Simplified NP-Complete MAXSAT Problem , 1998, Inf. Process. Lett..

[9]  Mechthild Stoer,et al.  A simple min-cut algorithm , 1997, JACM.

[10]  Liming Cai,et al.  On the Amount of Nondeterminism and the Power of Verifying , 1997, SIAM J. Comput..

[11]  Shankar M. Venkatesan,et al.  Approximation and Intractability Results for the Maximum Cut Problem and its Variants , 1991, IEEE Trans. Computers.

[12]  IbarakiToshihide,et al.  Computing edge-connectivity in multigraphs and capacitated graphs , 1992 .

[13]  Mihalis Yannakakis,et al.  On limited nondeterminism and the complexity of the V-C dimension , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[14]  Michael R. Fellows,et al.  FIXED-PARAMETER TRACTABILITY AND COMPLETENESS , 2022 .

[15]  Mihalis Yannakakis,et al.  On the approximation of maximum satisfiability , 1992, SODA '92.

[16]  S. Poljak,et al.  A Polynomial Algorithm for Constructing a Large Bipartite Subgraph, with an Application to a Satisfiability Problem , 1982, Canadian Journal of Mathematics.

[17]  Rajeev Kohli,et al.  The Minimum Satisfiability Problem , 1994, SIAM J. Discret. Math..

[18]  Michael R. Fellows,et al.  An Improved Fixed-Parameter Algorithm for Vertex Cover , 1998, Inf. Process. Lett..

[19]  Liming Cai,et al.  On Input Read-Modes of Alternating Turing Machines , 1995, Theor. Comput. Sci..

[20]  Toshihide Ibaraki,et al.  Computing Edge-Connectivity in Multigraphs and Capacitated Graphs , 1992, SIAM J. Discret. Math..

[21]  C. S. Edwards Some Extremal Properties of Bipartite Subgraphs , 1973, Canadian Journal of Mathematics.

[22]  Baruch Schieber,et al.  A Linear-time Algorithm for Computing the Intersection of All Odd Cycles in a Graph , 1997, Discret. Appl. Math..

[23]  Liming Cai,et al.  On Fixed-Parameter Tractability and Approximability of NP Optimization Problems , 1997, J. Comput. Syst. Sci..

[24]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..