Weathering of rocks and neogenesis of minerals associated with lichen activity

Abstract The weathering action of lichens on rocks and the biogeophysical and biogeochemical alteration of rock-forming minerals, their influence in dissolution and precipitation reactions and in bioformation of new minerals are reviewed. The intimate adhesion of lichen thalli to the rock surface and the hyphal penetration in less coherent areas of the rock cause a physical disaggregation and fragmentation of the mineral surface. Chemical weathering is essentially due to the excretion of organic acids. Depending on the nature of the minerals, etching patterns and decomposition features are formed by biosolubilisation processes. The presence of calcium, magnesium, manganese and copper oxalate crystals at the rock–lichen interface and in the lichen thalli suggests that oxalic acid, secreted by the mycobiont, is one of the most active agents of chemical alteration. Transformation of minerals to siliceous relicts, precipitation of iron oxides and hydroxides and formation of alumino-silicates are presumably related to the activity of organic acids in complexing and removing elements from the substrate. The involvement of the so-called `lichen acids', a group of mainly polyphenolic compounds, as bioweathering agents has been only recently well documented. Present and further progresses in the study of the lichen–rock relationship rely on application of modern instrumental and analytical techniques. The relevance of lichen weathering to the biodeterioration of stoneworks of artistic value is considered.

[1]  H. Viles A quantitative scanning electron microscope study of evidence for lichen weathering of limestone, Mendip Hills, Somerset , 1987 .

[2]  P. Adamo,et al.  Iron oxides and hydroxides in the weathering interface between Stereocaulon vesuvianum and volcanic rock , 1997, Clay minerals.

[3]  A. Forge,et al.  An Electron Microscope Examination of Acetobacter xylinum Showing the Ultrastructure of the Cells and the Association of Cellulose Microfibrils , 1977 .

[4]  T. Wadsten,et al.  Calcium oxalate hydrates on the surface of lichens , 1985, The Lichenologist.

[5]  H. Horner,et al.  Calcium Oxalate Bipyramidal Crystals on the Basidiocarps of Geastrum minus (Lycoperdales) , 1985 .

[6]  H. Edwards,et al.  Biological origin of major chemical disturbances on ecclesiastical architecture studied by Fourier Transform Raman spectroscopy , 1997 .

[7]  E. Fry The Mechanical Action of Crustaceous Lichens on Substrata of Shale, Schist, Gneiss, Limestone, and Obsidian , 1927 .

[8]  H. Sipman,et al.  Studies in lichenology with emphasis on chemotaxonomy, geography and phytochemistry : Festschrift Christian Leuckert , 1996 .

[9]  Cristina Sabbioni,et al.  A study of the patina called «Scialbatura» on imperial roman marbles , 1987 .

[10]  C. Ascaso,et al.  Structural Aspects of the Lichen‐Rock Interface Using Back‐scattered Electron Imaging , 1994 .

[11]  M. Monte,et al.  Trajan's Column: Lichens don't live here any more , 1991 .

[12]  P. Bayliss,et al.  Mineral nomenclature: glushinskite , 1987, Mineralogical Magazine.

[13]  J. D. Russell,et al.  Glushinskite, a naturally occurring magnesium oxalate , 1980, Mineralogical Magazine.

[14]  C. Ascaso,et al.  Application of back‐scattered electron imaging to the study of the lichen‐rock interface , 1994 .

[15]  M. Wilson,et al.  The occurrence and significance of manganese oxalate in Pertusaria corallina (Lichenes) , 1984, Pedobiologia.

[16]  M. Wilson,et al.  Chemical activity of lichens on mineral surfaces. A review , 1985 .

[17]  W. D. Keller,et al.  A comparative study of the role of lichens and "inorganic" processes in the chemical weathering of Recent Hawaiian lava flows , 1970 .

[18]  R. C. Wilson Residual deposits: surface related weathering processes and materials. , 1983 .

[19]  C. Ascaso,et al.  Study of tl1e biodeterioration zone between the lichen thallus and the substrate , 1995 .

[20]  O. W. Purvis,et al.  The Occurrence of Copper-Psoromic Acid in Lichens From Cupriferous Substrata , 1990, The Lichenologist.

[21]  J. Hazemann,et al.  Mechanisms of Lichen Resistance to Metallic Pollution , 1998 .

[22]  Mark R. D. Seaward,et al.  The role of lichens in the biodeterioration of ancient monuments with particular reference to central Italy , 2001 .

[23]  P. Huang,et al.  Interactions of soil minerals with natural organics and microbes , 1986 .

[24]  H. Edwards,et al.  Preliminary Raman microscopic analyses of a lichen encrustation involved in the biodeterioration of renaissance frescoes in Central Italy , 1991 .

[25]  C. Ascaso,et al.  The Pedogenic Action of Parmelia Conspersa, Rhizocarpon Geographicum and Umbjlicaria Pustulata , 1976, The Lichenologist.

[26]  A. Frey-wyssling CRYSTALLOGRAPHY OF THE TWO HYDRATES OF CRYSTALLINE CALCIUM OXALATE IN PLANTS , 1981 .

[27]  P. Violante,et al.  Mineralogy of some Italian andosols with special reference to the origin of the clay fraction , 1983 .

[28]  M. Jackson Soil Chemical Analysis - Advanced Course. , 1969 .

[29]  J. M. Tait,et al.  Weathering of a Basalt by Pertusaria Corallina , 1980 .

[30]  O. W. Purvis The Occurrence of Copper Oxalate in Lichens Growing on Copper Sulphide-Bearing Rocks In Scandinavia , 1984, The Lichenologist.

[31]  P. Ozenda,et al.  Les Lichens. Etude Biologique et Flore Illustree , 1971 .

[32]  Cesáreo Sáiz-Jiménez,et al.  Lichen colonization of the Roman pavement at Baelo Claudia (Cadiz, Spain): biodeterioration vs. bioprotection , 1995 .

[33]  Michael Wilson,et al.  The Weathering of Serpentinite by Lecanora Atra , 1981, The Lichenologist.

[34]  O. W. Purvis,et al.  Hydrated copper oxalate, moolooite, in lichens , 1987, Mineralogical Magazine.

[35]  D. Pinna,et al.  Fungal physiology and the formation of calcium oxalate films on stone monuments , 1993 .

[36]  J. Syers,et al.  METAL‐COMPLEX FORMATION BY LICHEN COMPOUNDS , 1972 .

[37]  C. Ascaso,et al.  Morphological and Chemical Features of Bioweathered Granitic Biotite Induced by Lichen Activity , 1996 .

[38]  P. Arlien‐Søborg,et al.  Science of the Total Environment , 2018 .

[39]  M. Robert,et al.  Solubilisation comparée des silicates, carbonates et hydroxydes en fonction des conditions du milieu , 1980 .

[40]  E. Fry A Suggested Explanation of the Mechanical Action of Lithophytic Lichens on Rocks (Shale) , 1924 .

[41]  M. Wilson,et al.  Lichen weathering of minerals: implications for pedogenesis , 1983, Geological Society, London, Special Publications.

[42]  O. W. Purvis,et al.  The Influence of Copper Mineralization on Acarospora Smaragdula , 1985, The Lichenologist.

[43]  H. Edwards,et al.  Ft-Raman Spectroscopy of Dirina Massiliensis f. Sorediata Encrustations Growing on Diverse Substrata , 1997, The Lichenologist.

[44]  C. Ascaso,et al.  Mineralogical Transformation of Bioweathered Granitic Biotite, Studied by HRTEM: Evidence for a New Pathway in Lichen Activity , 1998 .

[45]  J. Syers,et al.  PEDOGENETIC SIGNIFICANCE OF LICHENS , 1973 .

[46]  P. Adamo,et al.  Weathering of volcanic rocks from Mt. Vesuvius associated with the lichen Stereocaulon vesuvianum , 1991 .

[47]  E. Mellor Lichens and their Action on the Glass and Leadings of Church Windows , 1923, Nature.

[48]  H. Pézerat,et al.  Fautes d'empilement dans les oxalates dihydratés des métaux divalents de la série mangésienne (Mg,Fe,Co,Ni,Zn,Mn) , 1974 .

[49]  A Review of Lichens in Metal-Enriched Environments , 1996 .

[50]  J. Garty The postfire recovery of rock-inhabiting algae, microfungi, and lichens , 1992 .

[51]  W. Mchardy,et al.  Lichen weathering of rock‐forming minerals: application of scanning electron microscopy and microprobe analysis , 1981 .

[52]  J. Laundon,et al.  Observations on the Location and form of Lead in Stereocaulon Vesuvianum , 1982, The Lichenologist.

[53]  E. Friedmann,et al.  Endolithic Microorganisms in the Antarctic Cold Desert , 1982, Science.

[54]  O. Salvadori,et al.  Literature on Lichens and Biodeterioration of Stonework III , 1998, The Lichenologist.

[55]  O. W. Purvis,et al.  The Occurrence of Copper—norstictic Acid in Lichens from Cupriferous Substrata , 1987, The Lichenologist.

[56]  V. Farmer Possible roles of a mobile hydroxyaluminium orthosilicate complex(protoimogolite)and other hydroxyaluminium and hydroxy-iron species in podzolization , 1981 .

[57]  A. Schatz,et al.  Chelation in Nutrition, Soil Microorganisms and Soil Chelation. The Pedogenic Action of Lichens and Lichen Acids , 1963 .

[58]  C. Ascaso,et al.  The pedogenic action of lichens in metamorphic rocks , 1981 .

[59]  B. D. Mitchell,et al.  OCCURRENCE OF OXALATES IN SOIL CLAYS FOLLOWING HYDROGEN PEROXIDE TREATMENT , 1963 .

[60]  H. Edwards,et al.  Vibrational Raman spectroscopic studies of calcium oxalate monohydrate and dihydrate in lichen encrustations on renaissance frescoes , 1992 .

[61]  U. Schwertmann,et al.  Mutual Interactions Between Organics and Iron Oxides , 2015 .

[62]  D. Hallbauer,et al.  Attack of Lichens on Quartzitic Rock Surfaces , 1977, The Lichenologist.

[63]  W. B. Sanders,et al.  Physical Interactions of two Rhizomorph-forming Lichens with their Rock Substrate , 1994 .

[64]  C. Ascaso,et al.  The weathering of calcareous rocks by lichens , 1982, Pedobiologia.

[65]  J. H. Wilson,et al.  Node of Flowering as an Index of Plant Development , 1974 .

[66]  Dr. Siegfried Huneck,et al.  Identification of Lichen Substances , 1996, Springer Berlin Heidelberg.