Unconditional optimal error estimates of a two-grid method for semilinear parabolic equation

In this paper, the error analysis of a two-grid method (TGM) with backward Euler scheme is discussed for semilinear parabolic equation. Contrary to the conventional finite element analysis, the error between exact solution and finite element solution is split into two parts (temporal error and spatial error) by introducing a corresponding time-discrete system. This can lead to the spatial error independent of (time step). Secondly, based on the above technique, optimal error estimates in L2 and H1-norms of TGM solution are deduced unconditionally, while previous works always require a certain time step size condition. Finally, a numerical experiment is provided to confirm the theoretical analysis.

[1]  Jinchao Xu,et al.  Error estimates on a new nonlinear Galerkin method based on two-grid finite elements , 1995 .

[2]  Hehu Xie,et al.  Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem , 2014 .

[3]  Weiwei Sun,et al.  An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg-Landau equations of superconductivity , 2015, J. Comput. Phys..

[4]  Luoping Chen,et al.  Two‐Grid method for nonlinear parabolic equations by expanded mixed finite element methods , 2013 .

[5]  Yanping Chen,et al.  Two-Grid Method for Nonlinear Reaction-Diffusion Equations by Mixed Finite Element Methods , 2011, J. Sci. Comput..

[6]  Yunqing Huang,et al.  An Efficient Two-Grid Scheme for the Cahn-Hilliard Equation , 2015 .

[7]  Dongho Kim,et al.  TWO-SCALE PRODUCT APPROXIMATION FOR SEMILINEAR PARABOLIC PROBLEMS IN MIXED METHODS , 2014 .

[8]  Shi Dong-yang,et al.  Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016 .

[9]  Hehu Xie,et al.  Postprocessing and higher order convergence for the mixed finite element approximations of the eigenvalue problem , 2011 .

[10]  Zhangxin Chen,et al.  A two-level stabilized nonconforming finite element method for the stationary Navier-Stokes equations , 2009, Math. Comput. Simul..

[11]  Jinchao Xu Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .

[12]  Buyang Li,et al.  Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations , 2012, 1208.4698.

[13]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[14]  Huadong Gao,et al.  Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations , 2013, Journal of Scientific Computing.

[15]  Donald Estep,et al.  The discontinuous Galerkin method for semilinear parabolic problems , 1993 .

[16]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[17]  Hehu Xie,et al.  Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems , 2009 .

[18]  Weiwei Sun,et al.  Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations , 2015, Numerische Mathematik.

[19]  Vivette Girault,et al.  Two-grid finite-element schemes for the transient Navier-Stokes problem , 2001 .

[20]  X. Hu,et al.  Two-Grid Methods for Maxwell Eigenvalue Problems , 2014, SIAM J. Numer. Anal..

[21]  Stig Larsson,et al.  The long-time behavior of finite-element approximations of solutions of semilinear parabolic problems , 1989 .

[22]  Weiwei Sun,et al.  Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..

[23]  Yinnian He,et al.  Two‐level Newton iterative method for the 2D/3D steady Navier‐Stokes equations , 2012 .

[24]  Jilu Wang,et al.  A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..

[25]  Dongyang Shi,et al.  Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.

[26]  C.-S. Chien,et al.  An efficient algorithm for the Schrödinger-Poisson eigenvalue problem , 2007 .

[27]  Jinchao Xu,et al.  Two‐grid methods for time‐harmonic Maxwell equations , 2013, Numer. Linear Algebra Appl..

[28]  Hehu Xie,et al.  Acceleration of stabilized finite element discretizations for the Stokes eigenvalue problem , 2015, Adv. Comput. Math..

[29]  Jinchao Xu,et al.  A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..

[30]  Mary F. Wheeler,et al.  A Two-Grid Finite Difference Scheme for Nonlinear Parabolic Equations , 1998 .

[31]  Weiwei Sun,et al.  Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..

[32]  Wei Liu,et al.  Two-grid finite volume element methods for semilinear parabolic problems , 2010 .

[33]  Zhu Wang Nonlinear model reduction based on the finite element method with interpolated coefficients: Semilinear parabolic equations , 2013, 1304.0279.

[34]  M. Allen,et al.  A two-grid method for mixed finite-element solution of reaction-diffusion equations , 1999 .

[35]  Weiwei Sun,et al.  A New Error Analysis of Characteristics-Mixed FEMs for Miscible Displacement in Porous Media , 2014, SIAM J. Numer. Anal..

[36]  Deepjyoti Goswami,et al.  A two-level finite element method for time-dependent incompressible Navier-Stokes equations with non-smooth initial data , 2012, 1211.3342.

[37]  Huadong Gao,et al.  Unconditional Optimal Error Estimates of BDF–Galerkin FEMs for Nonlinear Thermistor Equations , 2016, J. Sci. Comput..