Unconditional optimal error estimates of a two-grid method for semilinear parabolic equation
暂无分享,去创建一个
[1] Jinchao Xu,et al. Error estimates on a new nonlinear Galerkin method based on two-grid finite elements , 1995 .
[2] Hehu Xie,et al. Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem , 2014 .
[3] Weiwei Sun,et al. An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg-Landau equations of superconductivity , 2015, J. Comput. Phys..
[4] Luoping Chen,et al. Two‐Grid method for nonlinear parabolic equations by expanded mixed finite element methods , 2013 .
[5] Yanping Chen,et al. Two-Grid Method for Nonlinear Reaction-Diffusion Equations by Mixed Finite Element Methods , 2011, J. Sci. Comput..
[6] Yunqing Huang,et al. An Efficient Two-Grid Scheme for the Cahn-Hilliard Equation , 2015 .
[7] Dongho Kim,et al. TWO-SCALE PRODUCT APPROXIMATION FOR SEMILINEAR PARABOLIC PROBLEMS IN MIXED METHODS , 2014 .
[8] Shi Dong-yang,et al. Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016 .
[9] Hehu Xie,et al. Postprocessing and higher order convergence for the mixed finite element approximations of the eigenvalue problem , 2011 .
[10] Zhangxin Chen,et al. A two-level stabilized nonconforming finite element method for the stationary Navier-Stokes equations , 2009, Math. Comput. Simul..
[11] Jinchao Xu. Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .
[12] Buyang Li,et al. Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations , 2012, 1208.4698.
[13] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[14] Huadong Gao,et al. Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations , 2013, Journal of Scientific Computing.
[15] Donald Estep,et al. The discontinuous Galerkin method for semilinear parabolic problems , 1993 .
[16] Jinchao Xu,et al. A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..
[17] Hehu Xie,et al. Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems , 2009 .
[18] Weiwei Sun,et al. Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations , 2015, Numerische Mathematik.
[19] Vivette Girault,et al. Two-grid finite-element schemes for the transient Navier-Stokes problem , 2001 .
[20] X. Hu,et al. Two-Grid Methods for Maxwell Eigenvalue Problems , 2014, SIAM J. Numer. Anal..
[21] Stig Larsson,et al. The long-time behavior of finite-element approximations of solutions of semilinear parabolic problems , 1989 .
[22] Weiwei Sun,et al. Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..
[23] Yinnian He,et al. Two‐level Newton iterative method for the 2D/3D steady Navier‐Stokes equations , 2012 .
[24] Jilu Wang,et al. A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..
[25] Dongyang Shi,et al. Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.
[26] C.-S. Chien,et al. An efficient algorithm for the Schrödinger-Poisson eigenvalue problem , 2007 .
[27] Jinchao Xu,et al. Two‐grid methods for time‐harmonic Maxwell equations , 2013, Numer. Linear Algebra Appl..
[28] Hehu Xie,et al. Acceleration of stabilized finite element discretizations for the Stokes eigenvalue problem , 2015, Adv. Comput. Math..
[29] Jinchao Xu,et al. A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..
[30] Mary F. Wheeler,et al. A Two-Grid Finite Difference Scheme for Nonlinear Parabolic Equations , 1998 .
[31] Weiwei Sun,et al. Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..
[32] Wei Liu,et al. Two-grid finite volume element methods for semilinear parabolic problems , 2010 .
[33] Zhu Wang. Nonlinear model reduction based on the finite element method with interpolated coefficients: Semilinear parabolic equations , 2013, 1304.0279.
[34] M. Allen,et al. A two-grid method for mixed finite-element solution of reaction-diffusion equations , 1999 .
[35] Weiwei Sun,et al. A New Error Analysis of Characteristics-Mixed FEMs for Miscible Displacement in Porous Media , 2014, SIAM J. Numer. Anal..
[36] Deepjyoti Goswami,et al. A two-level finite element method for time-dependent incompressible Navier-Stokes equations with non-smooth initial data , 2012, 1211.3342.
[37] Huadong Gao,et al. Unconditional Optimal Error Estimates of BDF–Galerkin FEMs for Nonlinear Thermistor Equations , 2016, J. Sci. Comput..