A Conjugate Gradient Method for Unconstrained Optimization Problems

A hybrid method combining the FR conjugate gradient method and the WYL conjugate gradient method is proposed for unconstrained optimization problems. The presented method possesses the sufficient descent property under the strong Wolfe-Powell (SWP) line search rule relaxing the parameter . Under the suitable conditions, the global convergence with the SWP line search rule and the weak Wolfe-Powell (WWP) line search rule is established for nonconvex function. Numerical results show that this method is better than the FR method and the WYL method.

[1]  Neculai Andrei,et al.  Another hybrid conjugate gradient algorithm for unconstrained optimization , 2008, Numerical Algorithms.

[2]  Ya-Xiang Yuan,et al.  A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..

[3]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[4]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[5]  William W. Hager,et al.  Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent , 2006, TOMS.

[6]  William W. Hager,et al.  A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..

[7]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[8]  C. Storey,et al.  Global convergence result for conjugate gradient methods , 1991 .

[9]  Gonglin Yuan,et al.  Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems , 2009, Optim. Lett..

[10]  W. Hager,et al.  A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS , 2005 .

[11]  Xiwen Lu,et al.  A modified PRP conjugate gradient method , 2009, Ann. Oper. Res..

[12]  Weijun Zhou,et al.  A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence , 2006 .

[13]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[14]  Liu Guanghui,et al.  Global convergence of the fletcher-reeves algorithm with inexact linesearch , 1995 .

[15]  N. Andrei Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization , 2009 .

[16]  Liuguanghui,et al.  GLOBAL CONVERGENCE OF THE FLETCHER-REEVES ALGORITHM WITH INEXACT LINESEARCH , 1995 .

[17]  R. Fletcher Practical Methods of Optimization , 1988 .

[18]  P. E. Frandsen,et al.  Unconstrained optimization , 1999 .

[19]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[20]  Duan Li,et al.  On Restart Procedures for the Conjugate Gradient Method , 2004, Numerical Algorithms.

[21]  Zengxin Wei,et al.  New line search methods for unconstrained optimization , 2009 .

[22]  M. Powell Nonconvex minimization calculations and the conjugate gradient method , 1984 .

[23]  Guoyin Li,et al.  New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems , 2006, Appl. Math. Comput..

[24]  Liying Liu,et al.  The convergence properties of some new conjugate gradient methods , 2006, Appl. Math. Comput..

[25]  Zengxin Wei,et al.  The proof of the sufficient descent condition of the Wei-Yao-Liu conjugate gradient method under the strong Wolfe-Powell line search , 2007, Appl. Math. Comput..

[26]  D. Touati-Ahmed,et al.  Efficient hybrid conjugate gradient techniques , 1990 .

[27]  DaiYuhong,et al.  A NONMONOTONE CONJUGATE GRADIENT ALGORITHM FOR UNCONSTRAINED OPTIMIZATION , 2002 .

[28]  Jorge Nocedal Conjugate Gradient Methods and Nonlinear Optimization , 1996 .

[29]  M. Al-Baali Descent Property and Global Convergence of the Fletcher—Reeves Method with Inexact Line Search , 1985 .

[30]  Lian Shu Convergence Properties of Conjugate Gradient Methods , 2003 .

[31]  C. Storey,et al.  Efficient generalized conjugate gradient algorithms, part 1: Theory , 1991 .

[32]  Jorge Nocedal,et al.  Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..

[33]  Nicholas I. M. Gould,et al.  CUTE: constrained and unconstrained testing environment , 1995, TOMS.

[34]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .