A characterization of nonhomogeneous wavelet dual frames in Sobolev spaces
暂无分享,去创建一个
[1] Hong Oh Kim,et al. On Parseval Wavelet Frames with Two or Three Generators via the Unitary Extension Principle , 2014, Canadian Mathematical Bulletin.
[2] Ole Christensen,et al. On extensions of wavelet systems to dual pairs of frames , 2014, Adv. Comput. Math..
[3] B. Han. Nonhomogeneous Wavelet Systems in High Dimensions , 2010, 1002.2421.
[4] Bin Han,et al. Characterization of Sobolev spaces of arbitrary smoothness using nonstationary tight wavelet frames , 2009 .
[5] B. Han. Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space , 2009, 0907.3501.
[6] Zuowei Shen,et al. Dual Wavelet Frames and Riesz Bases in Sobolev Spaces , 2009 .
[7] B. Han,et al. Pairs of Dual Wavelet Frames from Any Two Refinable Functions , 2004 .
[8] Marcin Bownik. A Characterization of Affine Dual Frames in L2(Rn) , 2000 .
[9] B. Han. On Dual Wavelet Tight Frames , 1997 .
[10] Marcin Bownik,et al. Tight frames of multidimensional wavelets , 1997 .
[11] Nikolaos Atreas,et al. Affine dual frames and Extension Principles , 2014 .
[12] M. Ehler. The multiresolution structure of pairs of dual wavelet frames for a pair of Sobolev , 2010 .
[13] I. Daubechies,et al. Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .
[14] C. Chui,et al. Inequalities of Littlewood-Paley type for frames and wavelets , 1993 .