The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex

[1]  Jordan,et al.  Structure of the lambda complex at 2.5 A resolution: details of the repressor-operator interactions , 1988, Science.

[2]  K. Martin,et al.  Alternative DNA loops regulate the arabinose operon in Escherichia coli. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[3]  F. Bushman,et al.  Turning λ Cro into a transcriptional activator , 1988, Cell.

[4]  Donald M. Crothers,et al.  DNA sequence determinants of CAP-induced bending and protein binding affinity , 1988, Nature.

[5]  M. Moore,et al.  Molecular basis of bacterial resistance to organomercurial and inorganic mercuric salts , 1988, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[6]  C. Francklyn,et al.  Arabinose-induced binding of AraC protein to araI2 activates the araBAD operon promoter. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D. Crothers,et al.  Kinetics of the stages of transcription initiation at the Escherichia coli lac UV5 promoter. , 1987, Biochemistry.

[8]  J. Gralla,et al.  DNA supercoiling promotes formation of a bent repression loop in lac DNA. , 1987, Journal of molecular biology.

[9]  M. Chamberlin,et al.  Isolation and properties of transcribing ternary complexes of Escherichia coli RNA polymerase positioned at a single template base. , 1987, Journal of molecular biology.

[10]  A. Heltzel,et al.  Overexpression and DNA-binding properties of the mer-encoded regulatory protein from plasmid NR1 (Tn21) , 1987, Journal of bacteriology.

[11]  Frederick M. Ausubel,et al.  Conserved domains in bacterial regulatory proteins that respond to environmental stimuli , 1987, Cell.

[12]  C. Harley,et al.  Analysis of E. coli promoter sequences. , 1987, Nucleic acids research.

[13]  D. Hamer,et al.  Regulation in vitro of metallothionein gene binding factors , 1987, Science.

[14]  A. Heguy,et al.  Metal-responsive elements act as positive modulators of human metallothionein-IIA enhancer activity , 1987, Molecular and cellular biology.

[15]  C. Walsh,et al.  Metalloregulatory DNA-binding protein encoded by the merR gene: isolation and characterization. , 1987, Science.

[16]  J. Gralla,et al.  High-resolution analysis of lac transcription complexes inside cells. , 1986, Biochemistry.

[17]  S. H. Shanblatt,et al.  The binding of catabolite activator protein and RNA polymerase to the Escherichia coli galactose and lactose promoters probed by alkylation interference studies. , 1986, The Journal of biological chemistry.

[18]  B. Dombroski,et al.  Hydroxyl radical "footprinting": high-resolution information about DNA-protein contacts and application to lambda repressor and Cro protein. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[19]  T. Lindahl,et al.  The intracellular signal for induction of resistance to alkylating agents in E. coli , 1986, Cell.

[20]  N. Brown,et al.  Transcriptional regulation of the mercury-resistance genes of transposon Tn501. , 1986, Journal of general microbiology.

[21]  Donald M. Crothers,et al.  Intermediates in transcription initiation from the E. coli lac UV5 promoter , 1985, Cell.

[22]  K. Kirkegaard,et al.  Changes in the DNA structure of the lac UV5 promoter during formation of an open complex with Escherichia coli RNA polymerase. , 1985, Biochemistry.

[23]  N. Brown,et al.  Mercuric ion-resistance operons of plasmid R100 and transposon Tn501: the beginning of the operon including the regulatory region and the first two structural genes. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[24]  A. Grossman,et al.  The htpR gene product of E. coli is a sigma factor for heat-shock promoters , 1984, Cell.

[25]  M. Rosenberg,et al.  Bacteriophage λ protein cII binds promoters on the opposite face of the DNA helix from RNA polymerase , 1983, Nature.

[26]  T. Foster,et al.  Tn5 insertion mutations in the mercuric ion resistance genes derived from plasmid R100 , 1983, Journal of bacteriology.

[27]  J. Wang,et al.  Mapping of single-stranded regions in duplex DNA at the sequence level: single-strand-specific cytosine methylation in RNA polymerase-promoter complexes. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Ptashne,et al.  Repressor structure and the mechanism of positive control , 1983, Cell.

[29]  M. Ptashne,et al.  Control of transcription by the bacteriophage P22 repressor. , 1982, Journal of molecular biology.

[30]  L. Guarente,et al.  Mutant lambda phage repressor with a specific defect in its positive control function. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Gralla,et al.  Spacer mutations in the lac ps promoter. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[32]  D. Crothers,et al.  Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. , 1981, Nucleic acids research.

[33]  T. Boulikas,et al.  Silver staining of proteins in polyacrylamide gels. , 1981, Analytical biochemistry.

[34]  M. M. Garner,et al.  A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system , 1981, Nucleic Acids Res..

[35]  C. Schmid,et al.  Pyrimidine-specific chemical reactions useful for DNA sequencing. , 1980, Nucleic acids research.

[36]  Walter Gilbert,et al.  E. coli RNA polymerase interacts homologously with two different promoters , 1980, Cell.

[37]  T. Foster,et al.  Transposon A-generated mutations in the mercuric resistance genes of plasmid R100-1 , 1979, Journal of bacteriology.

[38]  A. Revzin,et al.  Cooperative binding to DNA of catabolite activator protein of Escherichia coli. , 1979, Biochemistry.

[39]  M. Ptashne,et al.  Lambda repressor turns off transcription of its own gene. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[40]  H. Hayatsu,et al.  The selective degradation of pyrimidines in nucleic acids by permanganate oxidation. , 1967, Biochemical and biophysical research communications.

[41]  T. O’Halloran Metalloregulatory Proteins: Metal Responsive Molecular Switches Governing Gene Expression , 1989 .

[42]  S. Harrison,et al.  Effect of non-contacted bases on the affinity of 434 operator for 434 repressor and Cro , 1987, Nature.

[43]  N. Brown,et al.  Role of the merT and merP gene products of transposon Tn501 in the induction and expression of resistance to mercuric ions. , 1987, Gene.

[44]  M. Churchill,et al.  Hydroxyl radical footprinting: a high-resolution method for mapping protein-DNA contacts. , 1987, Methods in enzymology.

[45]  S. Harrison,et al.  Structure of the represser–operator complex of bacteriophage 434 , 1987, Nature.

[46]  Aaron Klug,et al.  DNA wrapping and writhing , 1987, Nature.

[47]  A. Summers Organization, expression, and evolution of genes for mercury resistance. , 1986, Annual review of microbiology.

[48]  W. Jackson,et al.  The DNA sequence of the mercury resistance operon of the IncFII plasmid NR1. , 1984, Journal of molecular and applied genetics.

[49]  M. Schwartz,et al.  Positive control of transcription initiation in bacteria. , 1984, Annual review of genetics.

[50]  W. Gilbert,et al.  Sequencing end-labeled DNA with base-specific chemical cleavages. , 1980, Methods in enzymology.