Glass sponges and bilaterian animals share derived mitochondrial genomic features: a common ancestry or parallel evolution?

Glass sponges (Hexactinellida) are a group of deep-water benthic animals that have a unique syncytial organization and possess a characteristic siliceous skeleton. Although hexactinellids are traditionally grouped with calcareous and demosponges in the phylum Porifera, the monophyly of sponges and the phylogenetic position of the Hexactinellida remain contentious. We determined and analyzed the nearly complete mitochondrial genome sequences of the hexactinellid sponges Iphiteon panicea and Sympagella nux. Unexpectedly, our analysis revealed several mitochondrial genomic features shared between glass sponges and bilaterian animals, including an Arg --> Ser change in the genetic code, a characteristic secondary structure of one of the serine tRNAs, highly derived tRNA and rRNA genes, and the presence of a single large noncoding region. At the same time, glass sponge mtDNA contains atp9, a gene previously found only in the mtDNA of demosponges (among animals), and encodes a tRNA(Pro);(UGG) with an atypical A11-U24 pair that is also found in demosponges and placozoans. Most of our sequence-based phylogenetic analyses place Hexactinellida as the sister group to the Bilateria; however, these results are suspect given accelerated rates of mitochondrial sequence evolution in these groups. Thus, it remains an open question whether shared mitochondrial genomic features in glass sponges and bilaterian animals reflect their close phylogenetic affinity or provide a remarkable example of parallel evolution.

[1]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[2]  P. Holland,et al.  Rare genomic changes as a tool for phylogenetics. , 2000, Trends in ecology & evolution.

[3]  David Posada,et al.  MtArt: a new model of amino acid replacement for Arthropoda. , 2006, Molecular biology and evolution.

[4]  H. Philippe,et al.  A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. , 2004, Molecular biology and evolution.

[5]  Joanna Aizenberg,et al.  Biological glass fibers: correlation between optical and structural properties. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  G. Mackie,et al.  Conduction system in a sponge. , 1981, Science.

[7]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[8]  S. Leys The Significance of Syncytial Tissues for the Position of the Hexactinellida in the Metazoa1 , 2003, Integrative and comparative biology.

[9]  Graziano Pesole,et al.  Congruent mammalian trees from mitochondrial and nuclear genes using Bayesian methods. , 2003, Molecular biology and evolution.

[10]  C. Wesley,et al.  Rapid directional walk within DNA clones by step-out PCR. , 1997, Methods in molecular biology.

[11]  R. Soest,et al.  Systema Porifera. A Guide to the Classification of Sponges , 2002 .

[12]  Jeffrey L. Boore,et al.  Gene translocation links insects and crustaceans , 1998, Nature.

[13]  A. Collins,et al.  Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  James C. Wilgenbusch,et al.  AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics , 2008, Bioinform..

[15]  D. Wolstenholme Genetic novelties in mitochondrial genomes of multicellular animals. , 1992, Current opinion in genetics & development.

[16]  Tsutomu Suzuki,et al.  Translation ability of mitochondrial tRNAsSer with unusual secondary structures in an in vitro translation system of bovine mitochondria , 2001, Genes to cells : devoted to molecular & cellular mechanisms.

[17]  R. Soest,et al.  Phylum Porifera Grant, 1836 , 2002 .

[18]  B. Lang,et al.  Unique mitochondrial genome architecture in unicellular relatives of animals , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Hervé Philippe,et al.  Lack of resolution in the animal phylogeny: closely spaced cladogeneses or undetected systematic errors? , 2007, Molecular biology and evolution.

[20]  Martin Vingron,et al.  TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing , 2002, Bioinform..

[21]  H. Reiswig Class Hexactinellida Schmidt, 1870 , 2002 .

[22]  Werner Müller,et al.  Evolutionary relationship of Porifera within the eukaryotes , 2006, Hydrobiologia.

[23]  G. Mackie,et al.  Studies on hexactinellid sponges. II. Excitability, conduction and coordination of responses in rhabdocalyptus dawsoni (lambe, 1873) , 1983 .

[24]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[25]  M. A. Steel,et al.  Confidence in evolutionary trees from biological sequence data , 1993, Nature.

[26]  K. Strimmer,et al.  TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics , 2004, BMC Evolutionary Biology.

[27]  Michael D. Hendy,et al.  A Framework for the Quantitative Study of Evolutionary Trees , 1989 .

[28]  Naotake Ogasawara,et al.  An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA. , 2003, Molecular cell.

[29]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[30]  S. Leys,et al.  Phylogenetic Position of the Hexactinellida Within the Phylum Porifera Based on the Amino Acid Sequence of the Protein Kinase C from Rhabdocalyptus dawsoni , 1998, Journal of Molecular Evolution.

[31]  R. Okimoto,et al.  The mitochondrial genome of the sea anemone Metridium senile (Cnidaria): introns, a paucity of tRNA genes, and a near-standard genetic code. , 1998, Genetics.

[32]  Masami Hasegawa,et al.  CONSEL: for assessing the confidence of phylogenetic tree selection , 2001, Bioinform..

[33]  J. Aizenberg,et al.  Fibre-optical features of a glass sponge , 2003, Nature.

[34]  T. Embley,et al.  Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I , 2004, Nature.

[35]  S. Pääbo,et al.  Codon reassignment and amino acid composition in hemichordate mitochondria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[36]  B. Degnan,et al.  Mitochondrial diversity of early-branching metazoa is revealed by the complete mt genome of a haplosclerid demosponge. , 2007, Molecular biology and evolution.

[37]  M. Hasegawa,et al.  Gene transfer to the nucleus and the evolution of chloroplasts , 1998, Nature.

[38]  W R Pearson,et al.  Using the FASTA program to search protein and DNA sequence databases. , 1994, Methods in molecular biology.

[39]  Laura F. Landweber,et al.  Rewiring the keyboard: evolvability of the genetic code , 2001, Nature Reviews Genetics.

[40]  B. Schierwater,et al.  Mitochondrial genome of Trichoplax adhaerens supports placozoa as the basal lower metazoan phylum. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[41]  David Posada,et al.  GenDecoder: genetic code prediction for metazoan mitochondria , 2006, Nucleic Acids Res..

[42]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[43]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[44]  B. Lang,et al.  Poriferan mtDNA and animal phylogeny based on mitochondrial gene arrangements. , 2005, Systematic biology.

[45]  Henri Grosjean,et al.  tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. , 2002, RNA.

[46]  J. McInerney,et al.  Indications of relationships between poriferan classes using full-length 18s rRNA gene sequences , 1999 .

[47]  S. Carroll,et al.  Animal Evolution and the Molecular Signature of Radiations Compressed in Time , 2005, Science.

[48]  M. Manuel,et al.  Sponge paraphyly and the origin of Metazoa , 2001, Journal of evolutionary biology.

[49]  Marta Riutort,et al.  Mitochondrial genome data support the basal position of Acoelomorpha and the polyphyly of the Platyhelminthes. , 2004, Molecular phylogenetics and evolution.

[50]  Yoshiyuki Kuchino,et al.  Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification , 1988, Nature.

[51]  M. Hasegawa,et al.  Model of amino acid substitution in proteins encoded by mitochondrial DNA , 1996, Journal of Molecular Evolution.

[52]  Wyville Thomson On Holtenia, A Genus of Vitreous Sponges , 1869 .

[53]  K. Watanabe,et al.  The presence of pseudouridine in the anticodon alters the genetic code: a possible mechanism for assignment of the AAA lysine codon as asparagine in echinoderm mitochondria. , 1999, Nucleic acids research.

[54]  B. Lang,et al.  Mitochondrial genomes of two demosponges provide insights into an early stage of animal evolution. , 2005, Molecular biology and evolution.

[55]  P. Waddell,et al.  Plastid Genome Phylogeny and a Model of Amino Acid Substitution for Proteins Encoded by Chloroplast DNA , 2000, Journal of Molecular Evolution.

[56]  O. Schmidt Grundzüge einer Spongien-Fauna des atlantischen Gebietes , 1870 .

[57]  L. Marechal-Drouard,et al.  A potato mitochondrial isoleucine tRNA is coded for by a mitochondrial gene possessing a methionine anticodon. , 1990, Nucleic acids research.

[58]  Xiujuan Wang,et al.  Mitochondrial genome of the homoscleromorph Oscarella carmela (Porifera, Demospongiae) reveals unexpected complexity in the common ancestor of sponges and other animals. , 2006, Molecular biology and evolution.

[59]  R. Meech,et al.  Impulse conduction in a sponge. , 1999, The Journal of experimental biology.

[60]  J. Garey,et al.  Platyhelminth mitochondrial DNA: Evidence for early evolutionary origin of a tRNAserAGN that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons , 1989, Journal of Molecular Evolution.

[61]  A. Collins,et al.  Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S rRNA molecular evidence. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[62]  R B Russell,et al.  Changes in mitochondrial genetic codes as phylogenetic characters: two examples from the flatworms. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[63]  R Staden,et al.  The staden sequence analysis package , 1996, Molecular biotechnology.