Microbial sulfur metabolism and environmental implications.

[1]  Zhili He,et al.  Mechanistic insights into organic carbon-driven water blackening and odorization of urban rivers. , 2020, Journal of hazardous materials.

[2]  Xiaohua Zhang,et al.  Bacteria are important dimethylsulfoniopropionate producers in marine aphotic and high-pressure environments , 2020, Nature Communications.

[3]  B. Schoepp‐Cothenet,et al.  Sulfite oxidation by the quinone-reducing molybdenum sulfite dehydrogenase SoeABC from the bacterium Aquifex aeolicus. , 2020, Biochimica et biophysica acta. Bioenergetics.

[4]  Zhili He,et al.  Organohalide-respiring bacteria in polluted urban rivers employ novel bifunctional reductive dehalogenases to dechlorinate polychlorinated biphenyls and tetrachloroethene. , 2020, Environmental science & technology.

[5]  Guang-hao Chen,et al.  Generation of zero valent sulfur from dissimilatory sulfate reduction under methanogenic conditions. , 2020, Journal of hazardous materials.

[6]  Nini Lin,et al.  Removal of heavy metals using a novel sulfidogenic AMD treatment system with sulfur reduction: Configuration, performance, critical parameters and economic analysis. , 2020, Environment international.

[7]  M. Häggblom,et al.  Transcriptomic and Proteomic Responses of the Organohalide-Respiring Bacterium Desulfoluna spongiiphila to Growth with 2,6-Dibromophenol as the Electron Acceptor , 2019, Applied and Environmental Microbiology.

[8]  Shanquan Wang,et al.  Metagenomic insights into production of zero valent sulfur from dissimilatory sulfate reduction in a methanogenic bioreactor , 2019 .

[9]  Alexander J. Probst,et al.  Groundwater cable bacteria conserve energy by sulfur disproportionation , 2019, The ISME Journal.

[10]  Meiying Xu,et al.  A critical review of the appearance of black-odorous waterbodies in China and treatment methods. , 2019, Journal of hazardous materials.

[11]  Guang-hao Chen,et al.  Experimental and modelling evaluations of sulfide formation in a mega-sized deep tunnel sewer system and implications for sewer management. , 2019, Environment international.

[12]  B. Jørgensen Unravelling the sulfur cycle of marine sediments. , 2019, Environmental microbiology.

[13]  M. Rolle,et al.  A modeling approach integrating microbial activity, mass transfer, and geochemical processes to interpret biological assays: An example for PCE degradation in a multi-phase batch setup. , 2019, Water research.

[14]  E. Reisner,et al.  Heme ligation and redox chemistry in two bacterial thiosulfate dehydrogenase (TsdA) enzymes , 2019, The Journal of Biological Chemistry.

[15]  C. Brearley,et al.  Bacteria are important dimethylsulfoniopropionate producers in coastal sediments , 2019, Nature Microbiology.

[16]  Jizhong Zhou,et al.  Complete Genome Sequence of Desulfovibrio desulfuricans IC1, a Sulfonate-Respiring Anaerobe , 2019, Microbiology Resource Announcements.

[17]  Guang-hao Chen,et al.  Advances in sulfur conversion-associated enhanced biological phosphorus removal in sulfate-rich wastewater treatment: A review. , 2019, Bioresource technology.

[18]  J. Vanbriesen,et al.  Reduction in sulfate inhibition of microbial dechlorination of polychlorinated biphenyls in Hudson and Grasse River sediments through fatty acid supplementation. , 2019, Chemosphere.

[19]  Manuel Liebeke,et al.  Dark aerobic sulfide oxidation by anoxygenic phototrophs in anoxic waters , 2019, Environmental microbiology.

[20]  G. Muyzer,et al.  Comparative Genomics of Thiohalobacter thiocyanaticus HRh1T and Guyparkeria sp. SCN-R1, Halophilic Chemolithoautotrophic Sulfur-Oxidizing Gammaproteobacteria Capable of Using Thiocyanate as Energy Source , 2019, Front. Microbiol..

[21]  E. Crane Sulfur-dependent microbial lifestyles: deceptively flexible roles for biochemically versatile enzymes. , 2019, Current opinion in chemical biology.

[22]  S. Vigneswaran,et al.  A critical review on remediation, reuse, and resource recovery from acid mine drainage. , 2019, Environmental pollution.

[23]  Peifang Wang,et al.  Vertical distribution and assemblages of microbial communities and their potential effects on sulfur metabolism in a black-odor urban river. , 2019, Journal of environmental management.

[24]  B. Schink,et al.  Pyrite formation from FeS and H2S is mediated through microbial redox activity , 2019, Proceedings of the National Academy of Sciences.

[25]  Jie Liu,et al.  Comparative Analyses of the Microbial Communities Inhabiting Coal Mining Waste Dump and an Adjacent Acid Mine Drainage Creek , 2019, Microbial Ecology.

[26]  J. Coates,et al.  Specific inhibitors of respiratory sulfate reduction: towards a mechanistic understanding. , 2019, Microbiology.

[27]  X. Zhuang,et al.  Impacts of Human Activities on the Composition and Abundance of Sulfate-Reducing and Sulfur-Oxidizing Microorganisms in Polluted River Sediments , 2019, Front. Microbiol..

[28]  D. Kopitsyn,et al.  Thioflexithrix psekupsensis gen. nov., sp. nov., a filamentous gliding sulfur bacterium from the family Beggiatoaceae. , 2019, International journal of systematic and evolutionary microbiology.

[29]  Jianhua Guo,et al.  Elucidating functional microorganisms and metabolic mechanisms in a novel engineered ecosystem integrating C, N, P and S biotransformation by metagenomics. , 2019, Water research.

[30]  S. Roux,et al.  Viral and metabolic controls on high rates of microbial sulfur and carbon cycling in wetland ecosystems , 2018, Microbiome.

[31]  Xinyun Cao,et al.  Lipoate-binding proteins and specific lipoate-protein ligases in microbial sulfur oxidation reveal an atpyical role for an old cofactor , 2018, eLife.

[32]  E. Bonch‐Osmolovskaya,et al.  Thermosulfurimonas marina sp. nov., an Autotrophic Sulfur-Disproportionating and Nitrate-Reducing Bacterium Isolated from a Shallow-Sea Hydrothermal Vent , 2018, Microbiology.

[33]  Zhili He,et al.  Electron transport chains in organohalide-respiring bacteria and bioremediation implications. , 2018, Biotechnology advances.

[34]  C. Dahl,et al.  A novel bacterial sulfur oxidation pathway provides a new link between the cycles of organic and inorganic sulfur compounds , 2018, The ISME Journal.

[35]  G. Lavik,et al.  Filamentous Giant Beggiatoaceae from the Guaymas Basin Are Capable of both Denitrification and Dissimilatory Nitrate Reduction to Ammonium , 2018, Applied and Environmental Microbiology.

[36]  G. Rákhely,et al.  A novel enzyme of type VI sulfide:quinone oxidoreductases in purple sulfur photosynthetic bacteria , 2018, Applied Microbiology and Biotechnology.

[37]  Harald R. Gruber-Vodicka,et al.  Gene expression and ultrastructure of meso‐ and thermophilic methanotrophic consortia , 2018, Environmental microbiology.

[38]  J. Reinfelder,et al.  Syntrophic pathways for microbial mercury methylation , 2018, The ISME Journal.

[39]  Guang-hao Chen,et al.  Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter. , 2018, Water research.

[40]  B. Jørgensen,et al.  Sulfate Transporters in Dissimilatory Sulfate Reducing Microorganisms: A Comparative Genomics Analysis , 2018, Front. Microbiol..

[41]  Guang-hao Chen,et al.  Blackening and odorization of urban rivers: a bio‐geochemical process , 2018, FEMS microbiology ecology.

[42]  K. Fukushi,et al.  Considering Water Quality of Urban Rivers from the Perspectives of Unpleasant Odor , 2018 .

[43]  Brian C. Thomas,et al.  Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle , 2018, The ISME Journal.

[44]  P. Bao,et al.  The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling. , 2018, The Science of the total environment.

[45]  Bo Liu,et al.  Performance evaluation and microbial community analysis of the function and fate of ammonia in a sulfate-reducing EGSB reactor , 2017, Applied Microbiology and Biotechnology.

[46]  P. G. Jayathilake,et al.  A mechanistic Individual-based Model of microbial communities , 2017, PloS one.

[47]  J. Murrell,et al.  Methanethiol-dependent dimethylsulfide production in soil environments , 2017, The ISME Journal.

[48]  Masashi Miura,et al.  Improved fermentative l-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli , 2017, Applied Microbiology and Biotechnology.

[49]  M. Damianovic,et al.  Down-flow fixed-structured bed reactor: An innovative reactor configuration applied to acid mine drainage treatment and metal recovery. , 2017, Journal of environmental management.

[50]  Kebede K. Kefeni,et al.  Acid mine drainage: Prevention, treatment options, and resource recovery: A review , 2017 .

[51]  K. Wasmund,et al.  The life sulfuric: microbial ecology of sulfur cycling in marine sediments , 2017, Environmental microbiology reports.

[52]  B. Masepohl,et al.  Bacterial PerO Permeases Transport Sulfate and Related Oxyanions , 2017, Journal of bacteriology.

[53]  X. Long,et al.  Temperature response of sulfide/ferrous oxidation and microbial community in anoxic sediments treated with calcium nitrate addition. , 2017, Journal of environmental management.

[54]  T. Schubert The organohalide-respiring bacterium Sulfurospirillum multivorans: a natural source for unusual cobamides , 2017, World journal of microbiology & biotechnology.

[55]  F. Jüttner,et al.  Malodorous volatile organic sulfur compounds: Sources, sinks and significance in inland waters , 2017, Critical reviews in microbiology.

[56]  Xue-duan Liu,et al.  Adaptive Evolution of Extreme Acidophile Sulfobacillus thermosulfidooxidans Potentially Driven by Horizontal Gene Transfer and Gene Loss , 2017, Applied and Environmental Microbiology.

[57]  C. Dahl,et al.  TsdC, a unique lipoprotein from Wolinella succinogenes that enhances tetrathionate reductase activity of TsdA , 2017, FEMS microbiology letters.

[58]  David H Perlman,et al.  An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers , 2016, Proceedings of the National Academy of Sciences.

[59]  B. C. Ricci,et al.  Gold acid mine drainage treatment by membrane separation processes: An evaluation of the main operational conditions , 2016 .

[60]  W. Luo,et al.  Diversity of bacterial dimethylsulfoniopropionate degradation genes in surface seawater of Arctic Kongsfjorden , 2016, Scientific Reports.

[61]  M. V. van Loosdrecht,et al.  Large-scale demonstration of the sulfate reduction autotrophic denitrification nitrification integrated (SANI(®)) process in saline sewage treatment. , 2016, Water research.

[62]  W. Orsi,et al.  Transcriptional analysis of sulfate reducing and chemolithoautotrophic sulfur oxidizing bacteria in the deep subseafloor. , 2016, Environmental microbiology reports.

[63]  S. Lignon,et al.  Microbial oxidative sulfur metabolism: biochemical evidence of the membrane-bound heterodisulfide reductase-like complex of the bacterium Aquifex aeolicus. , 2016, FEMS microbiology letters.

[64]  W. Shu,et al.  Microbial Ecology and Evolution in the Acid Mine Drainage Model System. , 2016, Trends in microbiology.

[65]  A. Schramm,et al.  A taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema , 2016, Systematic and applied microbiology.

[66]  Guang-hao Chen,et al.  Functional bacteria and process metabolism of the Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) system: An investigation by operating the system from deterioration to restoration. , 2016, Water research.

[67]  Jingying Chen,et al.  [Air Microbial Pollution and Health Risk of Urban Black Odorous Water]. , 2016, Huan jing ke xue= Huanjing kexue.

[68]  M. Fukui,et al.  Caldimicrobium thiodismutans sp. nov., a sulfur-disproportionating bacterium isolated from a hot spring, and emended description of the genus Caldimicrobium. , 2016, International journal of systematic and evolutionary microbiology.

[69]  I. Nijenhuis,et al.  Anaerobic microbial dehalogenation of organohalides-state of the art and remediation strategies. , 2016, Current opinion in biotechnology.

[70]  W. Shu,et al.  Microbial communities, processes and functions in acid mine drainage ecosystems. , 2016, Current opinion in biotechnology.

[71]  Guang-hao Chen,et al.  Sulfide-driven autotrophic denitrification significantly reduces N2O emissions. , 2016, Water research.

[72]  D. Johnston,et al.  A protein trisulfide couples dissimilatory sulfate reduction to energy conservation , 2015, Science.

[73]  L. Alvarez-Cohen,et al.  Identification of specific corrinoids reveals corrinoid modification in dechlorinating microbial communities. , 2015, Environmental microbiology.

[74]  A. Stams,et al.  Methanogens, sulphate and heavy metals: a complex system , 2015, Reviews in Environmental Science and Bio/Technology.

[75]  J. Zabranska,et al.  Sulfur-oxidizing bacteria in environmental technology. , 2015, Biotechnology advances.

[76]  邢鹏,et al.  浅水湖泊湖泛(黑水团)中的微生物生态学研究进展 , 2015 .

[77]  D. Fike,et al.  Rethinking the Ancient Sulfur Cycle , 2015 .

[78]  M. Ferrer,et al.  Microbial diversity and metabolic networks in acid mine drainage habitats , 2015, Front. Microbiol..

[79]  Haichun Gao,et al.  Endogenous generation of hydrogen sulfide and its regulation in Shewanella oneidensis , 2015, Front. Microbiol..

[80]  P. Jardine,et al.  Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments , 2015, The ISME Journal.

[81]  J. Middelburg,et al.  Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments , 2015, The ISME Journal.

[82]  Stephen P. Dearth,et al.  Cryptic carbon and sulfur cycling between surface ocean plankton , 2014, Proceedings of the National Academy of Sciences.

[83]  P. Chain,et al.  Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics , 2014, The ISME Journal.

[84]  T. Wubet,et al.  Insights into organohalide respiration and the versatile catabolism of Sulfurospirillum multivorans gained from comparative genomics and physiological studies. , 2014, Environmental microbiology.

[85]  T. Rattei,et al.  Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases , 2014, The ISME Journal.

[86]  Nitin S. Baliga,et al.  Erosion of functional independence early in the evolution of a microbial mutualism , 2014, Proceedings of the National Academy of Sciences.

[87]  M. Tourna,et al.  Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. , 2014, FEMS microbiology ecology.

[88]  E. O’Loughlin,et al.  Sulfur-mediated electron shuttling during bacterial iron reduction , 2014, Science.

[89]  S. Kasten,et al.  Global rates of marine sulfate reduction and implications for sub–sea-floor metabolic activities , 2014, Science.

[90]  Karthik Anantharaman,et al.  Sulfur Oxidation Genes in Diverse Deep-Sea Viruses , 2014, Science.

[91]  A. Stams,et al.  Sulfate reduction at low pH to remediate acid mine drainage. , 2014, Journal of hazardous materials.

[92]  Samodha C Fernando,et al.  Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom , 2014, The ISME Journal.

[93]  D. Antonopoulos,et al.  Effects of dissimilatory sulfate reduction on FeIII (hydr)oxide reduction and microbial community development , 2014 .

[94]  A. Kappler,et al.  Sulfur Species as Redox Partners and Electron Shuttles for Ferrihydrite Reduction by Sulfurospirillum deleyianum , 2014, Applied and Environmental Microbiology.

[95]  E. Martínez-Romero,et al.  Draft Genome Sequence of the Sulfolobales Archaeon AZ1, Obtained through Metagenomic Analysis of a Mexican Hot Spring , 2014, Genome Announcements.

[96]  Damir Brdjanovic,et al.  Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process. , 2014, Water research.

[97]  Shiming Ding,et al.  Microorganisms and typical organic matter responsible for lacustrine "black bloom". , 2014, The Science of the total environment.

[98]  A. Findlay,et al.  Phototrophic sulfide oxidation: environmental insights and a method for kinetic analysis , 2013, Front. Microbiol..

[99]  D. Enning,et al.  Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem , 2013, Applied and Environmental Microbiology.

[100]  Lei Zhang,et al.  Effects of physical and chemical characteristics of surface sediments in the formation of shallow lake algae-induced black bloom. , 2013, Journal of environmental sciences.

[101]  He Bai,et al.  Bioremediation of copper-containing wastewater by sulfate reducing bacteria coupled with iron. , 2013, Journal of environmental management.

[102]  Guang-hao Chen,et al.  A novel approach to realize SANI process in freshwater sewage treatment--Use of wet flue gas desulfurization waste streams as sulfur source. , 2013, Water research.

[103]  K. Finster,et al.  Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes , 2013, Extremophiles.

[104]  B. Guigliarelli,et al.  The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. , 2013, Biochimica et biophysica acta.

[105]  Alejandro Maass,et al.  Stoichiometric modeling of oxidation of reduced inorganic sulfur compounds (Riscs) in Acidithiobacillus thiooxidans , 2013, Biotechnology and bioengineering.

[106]  Brian C. Thomas,et al.  Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea , 2013, BMC Genomics.

[107]  Damir Brdjanovic,et al.  A new biological phosphorus removal process in association with sulfur cycle. , 2013, Water research.

[108]  L. Celis,et al.  Consortium diversity of a sulfate‐reducing biofilm developed at acidic pH influent conditions in a down‐flow fluidized bed reactor , 2013 .

[109]  P. McNamara,et al.  Abundance and diversity of organohalide-respiring bacteria in lake sediments across a geographical sulfur gradient. , 2013, FEMS microbiology ecology.

[110]  L. Hug,et al.  Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[111]  R. Amann,et al.  Complete genome sequence of Desulfocapsa sulfexigens, a marine deltaproteobacterium specialized in disproportionating inorganic sulfur compounds , 2013, Standards in genomic sciences.

[112]  T. Robinson,et al.  Impacts of a ‘black tide’ harmful algal bloom on rocky-shore intertidal communities on the West Coast of South Africa , 2013 .

[113]  P. Ascenzi,et al.  H2S: A “Double face” molecule in health and disease , 2013, BioFactors.

[114]  K. Konstantinidis,et al.  Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the ph , 2013, International journal of systematic and evolutionary microbiology.

[115]  D. Holmes,et al.  Anaerobic Sulfur Metabolism Coupled to Dissimilatory Iron Reduction in the Extremophile Acidithiobacillus ferrooxidans , 2013, Applied and Environmental Microbiology.

[116]  Brian C. Thomas,et al.  Biostimulation induces syntrophic interactions that impact C, S and N cycling in a sediment microbial community , 2012, The ISME Journal.

[117]  Markus Schmid,et al.  Zero-valent sulphur is a key intermediate in marine methane oxidation , 2012, Nature.

[118]  E. Bonch‐Osmolovskaya,et al.  Thermosulfurimonas dismutans gen. nov., sp. nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. , 2012, International journal of systematic and evolutionary microbiology.

[119]  F. Besenbacher,et al.  Filamentous bacteria transport electrons over centimetre distances , 2012, Nature.

[120]  William B. Whitman,et al.  Sulfur metabolism in archaea reveals novel processes. , 2012, Environmental microbiology.

[121]  M. Dopson,et al.  Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. , 2012, Environmental microbiology.

[122]  L. Alvarez-Cohen,et al.  Versatility in Corrinoid Salvaging and Remodeling Pathways Supports Corrinoid-Dependent Metabolism in Dehalococcoides mccartyi , 2012, Applied and Environmental Microbiology.

[123]  Darlene D Wagner,et al.  Unexpected Specificity of Interspecies Cobamide Transfer from Geobacter spp. to Organohalide-Respiring Dehalococcoides mccartyi Strains , 2012, Applied and Environmental Microbiology.

[124]  Li-Ming Shao,et al.  Odor compounds from different sources of landfill: characterization and source identification. , 2012, Waste management.

[125]  Peng Xing,et al.  Characterization of the bacterial community composition in a hypoxic zone induced by Microcystis blooms in Lake Taihu, China. , 2012, FEMS microbiology ecology.

[126]  M. V. van Loosdrecht,et al.  SANI® process realizes sustainable saline sewage treatment: steady state model-based evaluation of the pilot-scale trial of the process. , 2012, Water research.

[127]  Ying Teng,et al.  How do persistent organic pollutants be coupled with biogeochemical cycles of carbon and nutrients in terrestrial ecosystems under global climate change? , 2012, Journal of Soils and Sediments.

[128]  M. Klotz,et al.  The Wolinella succinogenes mcc gene cluster encodes an unconventional respiratory sulphite reduction system , 2011, Molecular microbiology.

[129]  C. Ayora,et al.  Long term remediation of highly polluted acid mine drainage: a sustainable approach to restore the environmental quality of the Odiel river basin. , 2011, Environmental pollution.

[130]  M. Sullivan,et al.  Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes , 2011, Nature Reviews Microbiology.

[131]  Cristian Picioreanu,et al.  iDynoMiCS: next-generation individual-based modelling of biofilms. , 2011, Environmental microbiology.

[132]  Christopher L. Hemme,et al.  How sulphate-reducing microorganisms cope with stress: lessons from systems biology , 2011, Nature Reviews Microbiology.

[133]  M. Loosdrecht,et al.  Microbial community of sulfate-reducing up-flow sludge bed in the SANI® process for saline sewage treatment , 2011, Applied Microbiology and Biotechnology.

[134]  C. Dahl,et al.  Regulation of Dissimilatory Sulfur Oxidation in the Purple Sulfur Bacterium Allochromatium Vinosum , 2011, Front. Microbio..

[135]  R. Sanford,et al.  The thermodynamic ladder in geomicrobiology , 2011, American Journal of Science.

[136]  Yongxia Guo,et al.  Functional genes based analysis of sulfur-oxidizing bacteria community in sulfide removing bioreactor , 2011, Applied Microbiology and Biotechnology.

[137]  D. Canfield,et al.  A Cryptic Sulfur Cycle in Oxygen-Minimum–Zone Waters off the Chilean Coast , 2010, Science.

[138]  D. Richardson,et al.  Kinetic and thermodynamic resolution of the interactions between sulfite and the pentahaem cytochrome NrfA from Escherichia coli. , 2010, The Biochemical journal.

[139]  Aaron Marc Saunders,et al.  A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants. , 2010, Water research.

[140]  Tong Zhang,et al.  Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications , 2010, Applied Microbiology and Biotechnology.

[141]  Lynne A. Goodwin,et al.  Complete genome sequence of Archaeoglobus profundus type strain (AV18T) , 2010, Standards in genomic sciences.

[142]  T. Kunisawa Evaluation of the phylogenetic position of the sulfate-reducing bacterium Thermodesulfovibrio yellowstonii (phylum Nitrospirae) by means of gene order data from completely sequenced genomes. , 2010, International journal of systematic and evolutionary microbiology.

[143]  E. Dinsdale,et al.  Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? , 2010, Trends in microbiology.

[144]  L. Nielsen,et al.  Electric currents couple spatially separated biogeochemical processes in marine sediment , 2010, Nature.

[145]  Paul J. McMurdie,et al.  Localized Plasticity in the Streamlined Genomes of Vinyl Chloride Respiring Dehalococcoides , 2009, PLoS genetics.

[146]  Raquel Quatrini,et al.  Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans , 2009, BMC Genomics.

[147]  Matthias T. Buhmann,et al.  Bifurcated Degradative Pathway of 3-Sulfolactate in Roseovarius nubinhibens ISM via Sulfoacetaldehyde Acetyltransferase and (S)-Cysteate Sulfolyase , 2009, Journal of bacteriology.

[148]  T. DiChristina,et al.  Anaerobic Respiration of Elemental Sulfur and Thiosulfate by Shewanella oneidensis MR-1 Requires psrA, a Homolog of the phsA Gene of Salmonella enterica Serovar Typhimurium LT2 , 2009, Applied and Environmental Microbiology.

[149]  M. V. van Loosdrecht,et al.  A novel sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process for saline wastewater treatment. , 2009, Water research.

[150]  S. Spring,et al.  Caldimicrobium rimae gen. nov., sp. nov., an extremely thermophilic, facultatively lithoautotrophic, anaerobic bacterium from the Uzon Caldera, Kamchatka. , 2009, International journal of systematic and evolutionary microbiology.

[151]  Michael Wagner,et al.  Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes , 2009, Environmental microbiology.

[152]  A. Kletzin,et al.  Sulfur Oxidation in Prokaryotes , 2008 .

[153]  C. Vonrhein,et al.  The Crystal Structure of Desulfovibrio vulgaris Dissimilatory Sulfite Reductase Bound to DsrC Provides Novel Insights into the Mechanism of Sulfate Respiration* , 2008, Journal of Biological Chemistry.

[154]  Thomas E Hanson,et al.  Functional Analysis of Three Sulfide:Quinone Oxidoreductase Homologs in Chlorobaculum tepidum , 2008, Journal of bacteriology.

[155]  Y. Kamagata,et al.  Thermodesulfovibrio aggregans sp. nov. and Thermodesulfovibrio thiophilus sp. nov., anaerobic, thermophilic, sulfate-reducing bacteria isolated from thermophilic methanogenic sludge, and emended description of the genus Thermodesulfovibrio. , 2008, International journal of systematic and evolutionary microbiology.

[156]  R. Kelly,et al.  Identification of Components of Electron Transport Chains in the Extremely Thermoacidophilic Crenarchaeon Metallosphaera sedula through Iron and Sulfur Compound Oxidation Transcriptomes , 2008, Applied and Environmental Microbiology.

[157]  Xiaojun Luo,et al.  Brominated flame retardants, polychlorinated biphenyls, and organochlorine pesticides in captive giant panda (ailuropoda melanoleuca) and red panda (Ailurus fulgens) from China. , 2008, Environmental science & technology.

[158]  A. Pruden,et al.  Microbial community analysis of two field-scale sulfate-reducing bioreactors treating mine drainage. , 2008, Environmental microbiology.

[159]  Kai Finster,et al.  Microbiological disproportionation of inorganic sulfur compounds , 2008 .

[160]  P. Curmi,et al.  Molecular mechanism of energy conservation in polysulfide respiration , 2008, Nature Structural &Molecular Biology.

[161]  A. Stams,et al.  The ecology and biotechnology of sulphate-reducing bacteria , 2008, Nature Reviews Microbiology.

[162]  K. Sowers,et al.  Dehalorespiration with Polychlorinated Biphenyls by an Anaerobic Ultramicrobacterium , 2008, Applied and Environmental Microbiology.

[163]  A. Annachhatre,et al.  Electron donors for biological sulfate reduction. , 2007, Biotechnology advances.

[164]  A. Katayama,et al.  Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil. , 2007, The Science of the total environment.

[165]  Zhiguo Yuan,et al.  Advances in enhanced biological phosphorus removal: from micro to macro scale. , 2007, Water research.

[166]  Satoshi Okabe,et al.  Succession of Sulfur-Oxidizing Bacteria in the Microbial Community on Corroding Concrete in Sewer Systems , 2006, Applied and Environmental Microbiology.

[167]  B. Jørgensen,et al.  A Starving Majority Deep Beneath the Seafloor , 2006, Science.

[168]  Eric F. Johnson,et al.  A New Type of Sulfite Reductase, a Novel Coenzyme F420-dependent Enzyme, from the Methanarchaeon Methanocaldococcus jannaschii* , 2005, Journal of Biological Chemistry.

[169]  A. Aivasidis,et al.  Sulfide removal in wastewater from petrochemical industries by autotrophic denitrification. , 2005, Water research.

[170]  K. Edwards,et al.  Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor. , 2005, Trends in microbiology.

[171]  R. Reinhardt,et al.  Genome sequence of the chlorinated compound–respiring bacterium Dehalococcoides species strain CBDB1 , 2005, Nature Biotechnology.

[172]  C. Friedrich,et al.  Prokaryotic sulfur oxidation. , 2005, Current opinion in microbiology.

[173]  D Barrie Johnson,et al.  Acid mine drainage remediation options: a review. , 2005, The Science of the total environment.

[174]  Katherine H. Kang,et al.  Genome Sequence of the PCE-Dechlorinating Bacterium Dehalococcoides ethenogenes , 2005, Science.

[175]  K. Saito Sulfur Assimilatory Metabolism. The Long and Smelling Road1 , 2004, Plant Physiology.

[176]  Rekha Seshadri,et al.  The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough , 2004, Nature Biotechnology.

[177]  B. Peyton,et al.  Uranium immobilization by sulfate-reducing biofilms. , 2004, Environmental science & technology.

[178]  T. Omori,et al.  Marinobacterium sp. strain DMS-S1 uses dimethyl sulphide as a sulphur source after light-dependent transformation by excreted flavins. , 2003, Environmental microbiology.

[179]  Jillian F Banfield,et al.  Microbial communities in acid mine drainage. , 2003, FEMS microbiology ecology.

[180]  S. J. Flynn,et al.  Characterization of Two Tetrachloroethene-Reducing, Acetate-Oxidizing Anaerobic Bacteria and Their Description as Desulfuromonas michiganensis sp. nov , 2003, Applied and Environmental Microbiology.

[181]  G. Esposito,et al.  Perspectives of sulfate reducing bioreactors in environmental biotechnology , 2002 .

[182]  O. Klimmek,et al.  The function of methyl-menaquinone-6 and polysulfide reductase membrane anchor (PsrC) in polysulfide respiration of Wolinella succinogenes. , 2002, European journal of biochemistry.

[183]  O. Drzyzga,et al.  Tetrachloroethene Dehalorespiration and Growth of Desulfitobacterium frappieri TCE1 in Strict Dependence on the Activity of Desulfovibrio fructosivorans , 2002, Applied and Environmental Microbiology.

[184]  M. Friedrich Phylogenetic Analysis Reveals Multiple Lateral Transfers of Adenosine-5′-Phosphosulfate Reductase Genes among Sulfate-Reducing Microorganisms , 2002, Journal of bacteriology.

[185]  R. V. Demicco,et al.  Oscillations in Phanerozoic Seawater Chemistry: Evidence from Fluid Inclusions , 2001, Science.

[186]  D. Barrie Johnson,et al.  Remediation of acidic waste waters using immobilised, acidophilic sulfate‐reducing bacteria , 2001 .

[187]  C. Friedrich,et al.  Oxidation of Reduced Inorganic Sulfur Compounds by Bacteria: Emergence of a Common Mechanism? , 2001, Applied and Environmental Microbiology.

[188]  M. Kertesz Bacterial transporters for sulfate and organosulfur compounds. , 2001, Research in microbiology.

[189]  Donald E. Canfield,et al.  Isotopic evidence for microbial sulphate reduction in the early Archaean era , 2001, Nature.

[190]  O. Drzyzga,et al.  Coexistence of a sulphate-reducing Desulfovibrio species and the dehalorespiring Desulfitobacterium frappieri TCE1 in defined chemostat cultures grown with various combinations of sulfate and tetrachloroethene. , 2001, Environmental microbiology.

[191]  H. Laue,et al.  Biochemical and molecular characterization of taurine:pyruvate aminotransferase from the anaerobe Bilophila wadsworthia. , 2000, European journal of biochemistry.

[192]  J. Keasling,et al.  Engineering Hydrogen Sulfide Production and Cadmium Removal by Expression of the Thiosulfate Reductase Gene (phsABC) from Salmonella enterica Serovar Typhimurium in Escherichia coli , 2000, Applied and Environmental Microbiology.

[193]  R. Kraft,et al.  Novel Genes Coding for Lithotrophic Sulfur Oxidation of Paracoccus pantotrophus GB17 , 2000, Journal of bacteriology.

[194]  B. Deplancke,et al.  Molecular Ecological Analysis of the Succession and Diversity of Sulfate-Reducing Bacteria in the Mouse Gastrointestinal Tract , 2000, Applied and Environmental Microbiology.

[195]  M. Adams,et al.  Characterization of Hydrogenase II from the Hyperthermophilic Archaeon Pyrococcus furiosus and Assessment of Its Role in Sulfur Reduction , 2000, Journal of bacteriology.

[196]  T. Lie,et al.  Sulfonates as Terminal Electron Acceptors for Growth of Sulfite-Reducing Bacteria (Desulfitobacterium spp.) and Sulfate-Reducing Bacteria: Effects of Inhibitors of Sulfidogenesis , 1999, Applied and Environmental Microbiology.

[197]  W. Sand,et al.  Bacterial Leaching of Metal Sulfides Proceeds by Two Indirect Mechanisms via Thiosulfate or via Polysulfides and Sulfur , 1999, Applied and Environmental Microbiology.

[198]  T. Höpner,et al.  Recovery from black spots: results of a loading experiment in the Wadden Sea , 1998 .

[199]  T. Höpner,et al.  Sulfate reduction related to the early diagenetic degradation of organic matter and “black spot” formation in tidal sandflats of the German Wadden Sea (southern North Sea): stable isotope (13C, 34S, 18O) and other geochemical results , 1998 .

[200]  R. Huber,et al.  A dissimilatory sirohaem-sulfite-reductase-type protein from the hyperthermophilic archaeon Pyrobaculum islandicum. , 1998, Microbiology.

[201]  J. Quinn,et al.  The role of sulfoacetaldehyde sulfo-lyase in the mineralization of isethionate by an environmental Acinetobacter isolate. , 1997, Microbiology.

[202]  H. Gemerden,et al.  Syntrophic growth of sulfate-reducing bacteria and colorless sulfur bacteria during oxygen limitation , 1997 .

[203]  R. Sanford,et al.  Initial Characterization of a Reductive Dehalogenase from Desulfitobacterium chlororespirans Co23 , 1996, Applied and environmental microbiology.

[204]  D A Stahl,et al.  Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms , 1996, Applied and environmental microbiology.

[205]  D. Canfield,et al.  The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. , 1994, Science.

[206]  T. Eglinton,et al.  Sulfonates: A novel class of organic sulfur compounds in marine sediments , 1994 .

[207]  C. Dahl,et al.  Dissimilatory sulphite reductase from Archaeoglobus fulgidus: physico-chemical properties of the enzyme and cloning, sequencing and analysis of the reductase genes. , 1993, Journal of general microbiology.

[208]  C. Woese,et al.  Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium , 1990, Archives of Microbiology.

[209]  J. Suflita,et al.  Dehalogenation: A Novel Pathway for the Anaerobic Biodegradation of Haloaromatic Compounds , 1982, Science.

[210]  B. Jørgensen Mineralization of organic matter in the sea bed—the role of sulphate reduction , 1982, Nature.

[211]  M. Maher,et al.  The central active site arginine in sulfite oxidizing enzymes alters kinetic properties by controlling electron transfer and redox interactions. , 2018, Biochimica et biophysica acta. Bioenergetics.

[212]  Xihui Zhang,et al.  Effect of water quality improvement on the remediation of river sediment due to the addition of calcium nitrate. , 2017, The Science of the total environment.

[213]  S. Atashgahi,et al.  Overview of Known Organohalide-Respiring Bacteria—Phylogenetic Diversity and Environmental Distribution , 2016 .

[214]  Fan Chengxin Progress and prospect in formation of black bloom in Lake Taihu: A review , 2015 .

[215]  G. Dick,et al.  Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. , 2014, Environmental Microbiology.

[216]  P. Kroneck,et al.  Microbial sulfite respiration. , 2013, Advances in microbial physiology.

[217]  U. Kappler Bacterial sulfite-oxidizing enzymes. , 2011, Biochimica et biophysica acta.

[218]  K. Hallberg,et al.  Carbon, iron and sulfur metabolism in acidophilic micro-organisms. , 2009, Advances in microbial physiology.

[219]  L. Barton,et al.  Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. , 2009, Advances in applied microbiology.

[220]  Ata Akcil,et al.  Acid Mine Drainage (AMD): causes, treatment and case studies , 2006 .

[221]  Gan Zhang,et al.  Abundances, depositional fluxes, and homologue patterns of polychlorinated biphenyls in dated sediment cores from the Pearl River Delta, China. , 2005, Environmental science & technology.

[222]  D. Canfield Biogeochemistry of Sulfur Isotopes , 2001 .

[223]  Adalberto Vallega,et al.  Urban waterfront facing integrated coastal management , 2001 .

[224]  F. Junker,et al.  Microbial desulfonation. , 1998, FEMS microbiology reviews.

[225]  H. Cypionka,et al.  A novel type of energy metabolism involving fermentation of inorganic sulphur compounds , 1987, Nature.

[226]  A. Cooper Biochemistry of sulfur-containing amino acids. , 1983, Annual review of biochemistry.

[227]  K. A. Brown Sulphur in the environment: A review , 1982 .

[228]  R. E. Jackson,et al.  Oxidation–reduction sequences in ground water flow systems , 1979 .