Broadband solar absorption enhancement via periodic nanostructuring of electrodes

Solution processed colloidal quantum dot (CQD) solar cells have great potential for large area low-cost photovoltaics. However, light utilization remains low mainly due to the tradeoff between small carrier transport lengths and longer infrared photon absorption lengths. Here, we demonstrate a bottom-illuminated periodic nanostructured CQD solar cell that enhances broadband absorption without compromising charge extraction efficiency of the device. We use finite difference time domain (FDTD) simulations to study the nanostructure for implementation in a realistic device and then build proof-of-concept nanostructured solar cells, which exhibit a broadband absorption enhancement over the wavelength range of λ = 600 to 1100 nm, leading to a 31% improvement in overall short-circuit current density compared to a planar device containing an approximately equal volume of active material. Remarkably, the improved current density is achieved using a light-absorber volume less than half that typically used in the best planar devices.

[1]  Jean-Pierre Celis,et al.  Conformal dip-coating of patterned surfaces for capillary die-to-substrate self-assembly , 2009 .

[2]  Edward H. Sargent,et al.  Tandem colloidal quantum dot solar cells employing a graded recombination layer , 2011 .

[3]  Aram Amassian,et al.  Hybrid passivated colloidal quantum dot solids. , 2012, Nature nanotechnology.

[4]  Ratan Debnath,et al.  Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.

[5]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[6]  I. Blech,et al.  Step coverage simulation and measurement in a dc planar magnetron sputtering system , 1983 .

[7]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[8]  Philippe Guyot-Sionnest,et al.  Electrical Transport in Colloidal Quantum Dot Films. , 2012, The journal of physical chemistry letters.

[9]  Harry A Atwater,et al.  Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. , 2011, Nano letters.

[10]  Yi Cui,et al.  Broadband light management using low-Q whispering gallery modes in spherical nanoshells , 2012, Nature Communications.

[11]  M. Hutley,et al.  The Optical Properties of 'Moth Eye' Antireflection Surfaces , 1982 .

[12]  Ping Sheng,et al.  Wavelength-selective absorption enhancement in thin-film solar cells , 1983 .

[13]  Edward H. Sargent,et al.  Jointly tuned plasmonic-excitonic photovoltaics using nanoshells. , 2013, Nano letters.

[14]  A. Alivisatos,et al.  Dielectric core-shell optical antennas for strong solar absorption enhancement. , 2012, Nano letters.

[15]  R. Morf,et al.  Submicrometer gratings for solar energy applications. , 1995, Applied optics.

[16]  C. Haynes,et al.  Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles , 2000 .

[17]  Ahmad R. Kirmani,et al.  The donor-supply electrode enhances performance in colloidal quantum dot solar cells. , 2013, ACS nano.

[18]  Jonathan Grandidier,et al.  Light Absorption Enhancement in Thin‐Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres , 2011, Advanced materials.

[19]  Shanhui Fan,et al.  Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings , 2010 .

[20]  J. Michel,et al.  Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells , 2007, IEEE Transactions on Electron Devices.

[21]  Edward H. Sargent,et al.  Folded-Light-Path Colloidal Quantum Dot Solar Cells , 2013, Scientific Reports.

[22]  A Paul Alivisatos,et al.  Photovoltaic performance of ultrasmall PbSe quantum dots. , 2011, ACS nano.

[23]  Yasha Yi,et al.  Efficiency enhancement in Si solar cells by textured photonic crystal back reflector , 2006 .

[24]  Moungi G Bawendi,et al.  Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. , 2011, Nano letters.

[25]  C. L. Cheung,et al.  Fabrication of nanopillars by nanosphere lithography , 2006 .

[26]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[27]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[28]  Edward H. Sargent,et al.  Colloidal quantum dot photovoltaics: the effect of polydispersity. , 2012, Nano letters.

[29]  Zhiyong Fan,et al.  Efficient photon capturing with ordered three-dimensional nanowell arrays. , 2012, Nano letters.

[30]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[31]  Peter Bermel,et al.  Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. , 2007, Optics express.

[32]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[33]  Stuart A. Boden,et al.  Tunable reflection minima of nanostructured antireflective surfaces , 2008 .

[34]  G. Whitesides,et al.  Light Trapping in Ultrathin Plasmonic Solar Cells References and Links , 2022 .