On the characterization of almost strictly totally positive matrices

A nonsingular matrix is called almost strictly totally positive when all its minors are nonnegative and, furthermore, these minors are strictly positive if and only if their diagonal entries are strictly positive. Almost strictly totally positive matrices are useful in Approximation Theory and Computer Aided Geometric Design to generate bases of functions with good shape preserving properties. In this paper we give an algorithmic characterization of these matrices. Moreover, we provide a determinantal characterization of them in terms of the positivity of a very reduced number of their minors and also in terms of their factorizations.