Output feedback control based on a high-order sliding manifold approach

In this note, we address the problem of output feedback control of multiple-input-multiple-output plants. The proposed approach is based on a high-order sliding manifold strategy. The resulting controller exhibits strong robustness properties, similar to high-gain control laws, but avoids peaking phenomena, thanks to the adoption of a time-varying sliding surface. Moreover, the dynamic control law is continuous and differentiable, thus avoiding chattering problems.

[1]  J. Grizzle,et al.  Necessary conditions for asymptotic tracking in nonlinear systems , 1994, IEEE Trans. Autom. Control..

[2]  C. Kwan On variable structure output feedback controllers , 1996, IEEE Trans. Autom. Control..

[3]  Paolo Nistri,et al.  Robust control design with integral action and limited rate control , 1999, IEEE Trans. Autom. Control..

[4]  P. Sannuti,et al.  A special coordinate basis of multivariable linear systems- Finite and infinite zero structure , 1986, 1986 25th IEEE Conference on Decision and Control.

[5]  Hassan K. Khalil,et al.  Singular perturbation methods in control : analysis and design , 1986 .

[6]  A. S.I. Zinober,et al.  Deterministric Control of Uncertain Systems , 1990 .

[7]  Thomas Kailath,et al.  Linear Systems , 1980 .

[8]  Ali Saberi,et al.  Time-scale structure assignment in linear multivariable systems using high-gain feedback , 1989 .

[9]  Vadim I. Utkin,et al.  A control engineer's guide to sliding mode control , 1999, IEEE Trans. Control. Syst. Technol..

[10]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[11]  Vadim I. Utkin,et al.  A singular perturbation analysis of high-gain feedback systems , 1977 .

[12]  Ali Saberi,et al.  Special coordinate basis for multivariable linear systems—finite and infinite zero structure, squaring down and decoupling , 1987 .

[13]  A. Levant Higher order sliding: Collection of design tools , 1997, 1997 European Control Conference (ECC).

[14]  Arie Levant,et al.  Higher order sliding modes as a natural phenomenon in control theory , 1996 .

[15]  F. Hoppensteadt Singular perturbations on the infinite interval , 1966 .

[16]  S. Żak,et al.  On variable structure output feedback controllers for uncertain dynamic systems , 1993, IEEE Trans. Autom. Control..

[17]  C. Natale,et al.  Second order sliding manifold approach for vibration reduction via output feedback: experimental results , 2001, 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556).

[18]  P. Kokotovic,et al.  The peaking phenomenon and the global stabilization of nonlinear systems , 1991 .

[19]  A. Zinober Deterministic control of uncertain systems , 1989, Proceedings. ICCON IEEE International Conference on Control and Applications.

[20]  Zongli Lin,et al.  Robust semiglobal stabilization of minimum-phase input-output linearizable systems via partial state and output feedback , 1995, IEEE Trans. Autom. Control..