Hyperarithmetical Sets

1. Preamble: Kleene [1943], Post [1944] and Mostowski [1947] . . . . . . . . . . . 2 1A. Post’s degrees of unsolvability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1B. Kleene’s arithmetical hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1C. Kleene [1943] vs. Post [1944] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1D. Mostowski [1947] and the analogies . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. On into the transfinite! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2A. Notations for ordinals, S1 and O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2B. The Ha-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2C. Myhill [1955] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2D. Effective grounded recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3. The basic facts about HYP (1950 – 1960) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3A. Codings and uniformities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3B. HYP as effective Borel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3C. Lebesgue [1905] and Mostowski [1951] . . . . . . . . . . . . . . . . . . . . . . . . 14 3D. The analytical hierarchy; HYP ⊆ ∆1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3E. Kleene’s Theorem, HYP = ∆1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3F. Addison [1959] and the revised analogies . . . . . . . . . . . . . . . . . . . . . . 20 3G. Relativization and the Kreisel Uniformization Theorem . . . . . . . . 21 3H. HYP-quantification and the Spector-Gandy Theorem . . . . . . . . . . 23 3I. The Kleene [1959a] HYP hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3J. Inductive definability on N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3K. HYP as recursive in 2E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4A. IND and HYP on abstract structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4B. Effective descriptive set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5. Appendix: some basic facts and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

[1]  S. Kleene General recursive functions of natural numbers , 1936 .

[2]  J. W. Addison,et al.  Separation principles in the hierarchies of classical and effective descriptive set theory , 1958 .

[3]  Hartley Rogers,et al.  Constructive versions of ordinal number classes , 1961 .

[4]  G. Kreisel,et al.  The Axiom of Choice and the Class of Hyperarithmetic Functions , 1962 .

[5]  Yiannis N. Moschovakis,et al.  Kleene's Amazing Second Recursion Theorem , 2009, The Bulletin of Symbolic Logic.

[6]  Y. Moschovakis Elementary induction on abstract structures (Studies in logic and the foundations of mathematics) , 1974 .

[7]  Yiannis Moschovakis Many-one degrees of the predicates Ha (x) , 1966 .

[8]  P. Ricker,et al.  SUBMITTED VERSION , 2018 .

[9]  Hilary Putnam,et al.  A note on the hyperarithmetical hierarchy , 1970, Journal of Symbolic Logic.

[10]  C. Kuratowski Sur les fonctions représentables analytiquement et les ensembles de première catégorie , 2022 .

[11]  S. C. Kleene,et al.  Recursive functionals and quantifiers of finite types. II , 1959 .

[12]  Andrzej Mostowski,et al.  On definable sets of positive integers , 1947 .

[13]  W. Szymanowski,et al.  BULLETIN DE L'ACADEMIE POLONAISE DES SCIENCES , 1953 .

[14]  Yiannis N. Moschovakis Classical descriptive set theory as a refinement of effective descriptive set theory , 2010, Ann. Pure Appl. Log..

[15]  John R. Steel,et al.  Forcing with tagged trees , 1978 .

[16]  Michel Souslin Sur une definition des ensembles mesurables B sans nombres transfinis , 1917 .

[17]  Emil L. Post Recursively enumerable sets of positive integers and their decision problems , 1944 .

[18]  Bar-Hillel,et al.  Essays on the Foundations of Mathematics , 1961 .

[19]  S. C. Kleene,et al.  Quantification of number-theoretic functions , 1960 .

[20]  Emil L. Post Recursive Unsolvability of a problem of Thue , 1947, Journal of Symbolic Logic.

[21]  Hilary Putnam,et al.  An unsolvable problem in number theory , 1960, Journal of Symbolic Logic.

[22]  Stephen Cole Kleene,et al.  On notation for ordinal numbers , 1938, Journal of Symbolic Logic.

[23]  A. Turing,et al.  On Computable Numbers, with an Application to the Entscheidungsproblem. A Correction , 1938 .

[24]  G. C. Nelson Many-one reducibility within the Turing degrees of the hyperarithmetic sets ₐ() , 1974 .

[25]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[26]  S. Kleene On the Forms of the Predicates in the Theory of Constructive Ordinals (Second Paper) , 1955 .

[27]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[28]  S. Kleene Hierarchies of number-theoretic predicates , 1955 .

[29]  Motokiti Kondô Sur l'uniformisation des complémentaires analytiques et les ensembles projectifs de la seconde classe , 1939 .

[30]  S. Kleene Arithmetical predicates and function quantifiers , 1955 .