Distributing fully optomechanical quantum correlations

We present a scheme to prepare quantum correlated states of two mechanical systems based on the pouring of preavailable all-optical entanglement into the state of two micromirrors belonging to remote and noninteracting optomechanical cavities. We show that, under realistic experimental conditions, the protocol allows for the preparation of a genuine quantum state of a composite mesoscopic system whose nonclassical features extend beyond the occurrence of entanglement. We finally discuss a way to access such mechanical correlations.

[1]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[2]  K. Vahala,et al.  Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction , 2006 .

[3]  J. Cirac,et al.  Discrete entanglement distribution with squeezed light. , 2003, Physical review letters.

[4]  Samuel L. Braunstein,et al.  Quantum-state transfer from light to macroscopic oscillators , 2003 .

[5]  M Paternostro,et al.  Complete conditions for entanglement transfer. , 2004, Physical review letters.

[6]  J. Teufel,et al.  Circuit cavity electromechanics in the strong-coupling regime , 2010, Nature.

[7]  Kaufman,et al.  Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. , 1987, Physical review. A, General physics.

[8]  Stefano Mancini,et al.  Entangling macroscopic oscillators exploiting radiation pressure. , 2002, Physical review letters.

[9]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[10]  A. Datta,et al.  Quantum versus classical correlations in Gaussian states. , 2010, Physical review letters.

[11]  J Eisert,et al.  Creating and probing multipartite macroscopic entanglement with light. , 2007, Physical review letters.

[12]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[13]  M. Paternostro,et al.  Entanglement detection in hybrid optomechanical systems , 2011, 1105.0513.

[14]  Thomas Coudreau,et al.  Effects of mode coupling on the generation of quadrature Einstein-Podolsky-Rosen entanglement in a type-II optical parametric oscillator below threshold , 2005 .

[15]  A S Sørensen,et al.  Optomechanical transducers for long-distance quantum communication. , 2010, Physical review letters.

[16]  Christoph Simon,et al.  Towards quantum superpositions of a mirror , 2004 .

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  Martin B Plenio,et al.  Steady state entanglement in the mechanical vibrations of two dielectric membranes. , 2008, Physical review letters.

[19]  P. Tombesi,et al.  Emergence of atom-light-mirror entanglement inside an optical cavity , 2008, 0801.2266.

[20]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[21]  Stefano Mancini,et al.  Stationary entanglement between two movable mirrors in a classically driven Fabry–Perot cavity , 2006, quant-ph/0611038.

[22]  M. Oberthaler,et al.  Squeezing and entanglement in a Bose–Einstein condensate , 2008, Nature.

[23]  Khaled Karrai,et al.  Cavity cooling of a microlever , 2004, Nature.

[24]  J. B. Hertzberg,et al.  Preparation and detection of a mechanical resonator near the ground state of motion , 2009, Nature.

[25]  J. Laurat,et al.  Mapping photonic entanglement into and out of a quantum memory , 2007, Nature.

[26]  M. Aspelmeyer,et al.  Observation of strong coupling between a micromechanical resonator and an optical cavity field , 2009, Nature.

[27]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[28]  Jay M. Gambetta,et al.  Preparation and measurement of three-qubit entanglement in a superconducting circuit , 2010, Nature.

[29]  K Hammerer,et al.  Strong coupling of a mechanical oscillator and a single atom. , 2009, Physical review letters.

[30]  T. Hänsch,et al.  Controlled collisions for multi-particle entanglement of optically trapped atoms , 2003, Nature.

[31]  M. Paris,et al.  Gaussian quantum discord. , 2010, Physical review letters.

[32]  Antoine Heidmann,et al.  Entangling movable mirrors in a double-cavity system , 2005 .

[33]  Seth Lloyd,et al.  Macroscopic entanglement by entanglement swapping. , 2006, Physical review letters.

[34]  G. Agarwal,et al.  Entangling nanomechanical oscillators in a ring cavity by feeding squeezed light , 2009, 0908.1445.

[35]  M. Paternostro,et al.  Cold-atom-induced control of an optomechanical device. , 2010, Physical review letters.

[36]  J Eisert,et al.  Gently modulating optomechanical systems. , 2009, Physical review letters.

[37]  Philippe Grangier,et al.  Generation of optical ‘Schrödinger cats’ from photon number states , 2007, Nature.

[38]  Yong-Fan Chen,et al.  Low-light-level cross-phase modulation by quantum interference , 2010 .

[39]  Stefano Mancini,et al.  Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback , 1998 .

[40]  Aires Ferreira,et al.  Optomechanical entanglement between a movable mirror and a cavity field , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[41]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.