A unified accretion-ejection paradigm for black hole X-ray binaries

Context. It has been suggested that the cycles of activity of X-ray binaries (XRB) are triggered by a switch in the dominant disk torque responsible for accretion. As the disk accretion rate increases, the disk innermost regions therefore change from a jet-emitting disk (JED) to a standard accretion disk (SAD). Aims. While JEDs have been proven to successfully reproduce X-ray binary hard states, the existence of an outer cold SAD introduces an extra nonlocal cooling term. We investigate the thermal structure and associated spectra of such a hybrid disk configuration. Methods. We use a two-temperature plasma code, allowing for outside-in computation of the disk local thermal equilibrium with self-consistent advection and optically thin-to-thick transitions in both radiation and gas supported regimes. The nonlocal inverse Compton cooling introduced by the external soft photons is computed by the BELM code. Results. This additional cooling term has a profound influence on JED solutions, allowing a smooth temperature transition from the outer SAD to the inner JED. We explore the full parameter space in disk accretion rate and transition radius, and show that the whole domain in X-ray luminosities and hardness ratios covered by standard XRB cycles is well reproduced by such hybrid disk configurations. Precisely, a reasonable combination of these parameters allows us to reproduce the 3–200 keV spectra of each of five canonical XRB states. Along with these X-ray signatures, JED-SAD configurations also naturally account for the radio emission whenever it is observed. Conclusions. By varying only the radial transition radius and the accretion rate, hybrid disk configurations combining an inner JED and an outer SAD are able to simultaneously reproduce the X-ray spectral states and radio emission of X-ray binaries during their outburst. Adjusting these two parameters, it is then possible to reproduce a full cycle. This will be shown in a forthcoming paper.

[1]  M. Clavel,et al.  A unified accretion-ejection paradigm for black hole X-ray binaries , 2020, Astronomy & Astrophysics.

[2]  J. Rodriguez,et al.  A unified accretion-ejection paradigm for black hole X-ray binaries , 2019, Astronomy & Astrophysics.

[3]  M. Clavel,et al.  A unified accretion-ejection paradigm for black hole X-ray binaries , 2018, Astronomy & Astrophysics.

[4]  J. Poutanen,et al.  Doughnut strikes sandwich: the geometry of hot medium in accreting black hole X-ray binaries , 2017, Astronomy & Astrophysics.

[5]  A. Chiavassa,et al.  The Mass Function of GX 339–4 from Spectroscopic Observations of Its Donor Star , 2017, 1708.04667.

[6]  Zhaohuan Zhu,et al.  Global Evolution of an Accretion Disk with a Net Vertical Field: Coronal Accretion, Flux Transport, and Disk Winds , 2017, 1701.04627.

[7]  G. Lesur,et al.  Global simulations of protoplanetary disks with net magnetic flux: I. Non-ideal MHD case , 2016, 1612.00883.

[8]  D. Walton,et al.  NuSTAR AND SWIFT OBSERVATIONS OF THE VERY HIGH STATE IN GX 339-4: WEIGHING THE BLACK HOLE WITH X-RAYS , 2016, 1603.03777.

[9]  M. Clavel,et al.  Systematic spectral analysis of GX 339‐4: Influence of Galactic background and reflection models , 2016, 1601.05867.

[10]  M. Clavel,et al.  Absorption lines from magnetically-driven winds in X-ray binaries , 2015, 1512.09149.

[11]  J. Gladstone,et al.  WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES , 2015, 1512.00778.

[12]  College Park,et al.  Efficiency of thin magnetically arrested discs around black holes , 2015, 1508.05323.

[13]  R. Narayan,et al.  NUMERICAL SIMULATION OF HOT ACCRETION FLOWS. III. REVISITING WIND PROPERTIES USING THE TRAJECTORY APPROACH , 2015, 1501.01197.

[14]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[15]  Takeru K. Suzuki,et al.  MAGNETOHYDRODYNAMIC SIMULATIONS OF GLOBAL ACCRETION DISKS WITH VERTICAL MAGNETIC FIELDS , 2013, 1309.6916.

[16]  J. Stone,et al.  WIND-DRIVEN ACCRETION IN PROTOPLANETARY DISKS. I. SUPPRESSION OF THE MAGNETOROTATIONAL INSTABILITY AND LAUNCHING OF THE MAGNETOCENTRIFUGAL WIND , 2013, 1301.0318.

[17]  A. Tzioumis,et al.  The 'universal' radio/X-ray flux correlation : the case study of the black hole GX 339-4 , 2012, 1211.1600.

[18]  R. Narayan,et al.  The Shakura-Sunyaev viscosity prescription with variable α (r) , 2012, 1211.0526.

[19]  G. Lesur,et al.  The magnetorotational instability as a jet launching mechanism , 2012, 1210.6660.

[20]  Maochun Wu,et al.  NUMERICAL SIMULATION OF HOT ACCRETION FLOWS. II. NATURE, ORIGIN, AND PROPERTIES OF OUTFLOWS AND THEIR POSSIBLE OBSERVATIONAL APPLICATIONS , 2012, 1206.4173.

[21]  G. Ponti,et al.  Ubiquitous equatorial accretion disc winds in black hole soft states , 2012, 1201.4172.

[22]  M. Coriat,et al.  Radiatively efficient accreting black holes in the hard state: the case study of H1743-322 , 2011, 1101.5159.

[23]  C. Foellmi,et al.  Relevance of jet emitting disc physics to microquasars: application to Cygnus X-1 , 2010, 1007.1478.

[24]  M. Tagger,et al.  Rossby Wave Instability and three-dimensional vortices in accretion disks , 2010, 1004.0302.

[25]  T. Belloni,et al.  A global spectral study of black hole X-ray binaries , 2009, 0912.0142.

[26]  M. Coriat,et al.  The infrared/X-ray correlation of GX 339−4: probing hard X-ray emission in accreting black holes , 2009, 0909.3283.

[27]  T. Belloni,et al.  The evolution of the high-energy cut-off in the X-ray spectrum of GX 339−4 across a hard-to-soft transition , 2009, 0908.2451.

[28]  T. Belloni,et al.  Jets from black hole X-ray binaries: testing, refining and extending empirical models for the coupling to X-rays , 2009, 0903.5166.

[29]  Z. Paragi,et al.  Revealing Hanny's Voorwerp : radio observations of IC 2497 , 2009, 0905.1851.

[30]  A. Marcowith,et al.  Simulating radiation and kinetic processes in relativistic plasmas , 2008, 0808.1258.

[31]  J. Casares,et al.  On the masses and evolutionary status of the black hole binary GX 339-4: a twin system of XTE J1550-564? , 2008, 0801.3268.

[32]  G. Henri,et al.  The role of the disc magnetization on the hysteresis behaviour of X-ray binaries , 2007, 0712.3388.

[33]  Aya Kubota,et al.  Modelling the behaviour of accretion flows in X-ray binaries , 2007, 0708.0148.

[34]  M. Pringle Time-dependent models of two-phase accretion discs around black holes , 2006, astro-ph/0612751.

[35]  S. Jester,et al.  Accretion states and radio loudness in active galactic nuclei: analogies with X-ray binaries , 2006, astro-ph/0608628.

[36]  J. McClintock,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[37]  P. Petrucci,et al.  A unified accretion-ejection paradigm for black hole X-ray binaries - I. The dynamical constituents , 2005, astro-ph/0511123.

[38]  B. Liu,et al.  Spectral state transitions in low-mass X-ray binaries - the effect of hard and soft irradiation , 2005, astro-ph/0506444.

[39]  Moscow,et al.  Broad-band spectra of Cyg X-1 and correlations between spectral characteristics , 2005, astro-ph/0502423.

[40]  B. Liu,et al.  Hysteresis in spectral state transitions - a challenge for theoretical modeling , 2004, astro-ph/0411145.

[41]  T. Belloni,et al.  A Unified Model for Black Hole X-Ray Binary Jets? , 2004, astro-ph/0506469.

[42]  A. Tzioumis,et al.  On the Origin of Radio Emission in the X-Ray States of XTE J1650–500 during the 2001-2002 Outburst , 2004, astro-ph/0409154.

[43]  B. A. Harmon,et al.  GX 339—4: the distance, state transitions, hysteresis and spectral correlations , 2004, astro-ph/0402380.

[44]  M. Tagger,et al.  Magnetic Floods: A Scenario for the Variability of the Microquasar GRS 1915+105 , 2004, astro-ph/0401539.

[45]  A. Fabian,et al.  Evidence of Black Hole Spin in GX 339–4: XMM-Newton/EPIC-pn and RXTE Spectroscopy of the Very High State , 2003, astro-ph/0312033.

[46]  R. G. West,et al.  Variability in black hole accretion discs , 2003, astro-ph/0311035.

[47]  A. Lasenby,et al.  The lack of variability of the iron line in MCG–6‐30‐15: general relativistic effects , 2003, astro-ph/0307163.

[48]  R. Sunyaev,et al.  The non-linear dependence of flux on black hole mass and accretion rate in core-dominated jets , 2003, astro-ph/0305252.

[49]  S. Corbel,et al.  Near-Infrared Synchrotron Emission from the Compact Jet of GX 339–4 , 2002, astro-ph/0205402.

[50]  J. Hawley,et al.  The Dynamical Structure of Nonradiative Black Hole Accretion Flows , 2002, astro-ph/0203309.

[51]  M. McConnell,et al.  The Soft Gamma-Ray Spectral Variability of Cygnus X-1 , 2001, astro-ph/0112326.

[52]  J. Lasota The disc instability model of dwarf novae and low-mass X-ray binary transients , 2001, astro-ph/0102072.

[53]  F. Yuan Luminous hot accretion discs , 2000, astro-ph/0009207.

[54]  R. Fender Powerful jets from black hole X-ray binaries in low/hard X-ray states , 2000, astro-ph/0008447.

[55]  S. Kato,et al.  Transition from Standard Disk to Advection-dominated Accretion Flow , 2000 .

[56]  Boulder,et al.  Dynamics of Line-driven Disk Winds in Active Galactic Nuclei. II. Effects of Disk Radiation , 2000, astro-ph/0005315.

[57]  Hui Li,et al.  Rossby Wave Instability of Thin Accretion Disks. II. Detailed Linear Theory , 1999, astro-ph/9907279.

[58]  M. Gierliński,et al.  Radiation mechanisms and geometry of cygnus X-1 in the soft state , 1999, astro-ph/9905146.

[59]  S. Corbel,et al.  Quenching of the Radio Jet during the X-Ray High State of GX 339–4 , 1999, astro-ph/9905121.

[60]  D. Smith,et al.  Correlation between Compton reflection and X-ray slope in Seyferts and X-ray binaries , 1998, astro-ph/9812215.

[61]  Hui Li,et al.  Rossby Wave Instability of Keplerian Accretion Disks , 1998, astro-ph/9809321.

[62]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[63]  J. Grove,et al.  Gamma-Ray Spectral States of Galactic Black Hole Candidates , 1998, astro-ph/9802242.

[64]  I. Igumenshchev,et al.  A note on the conditions for SSD—ADAF transitions , 1998 .

[65]  R. Narayan,et al.  Advection-Dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991 , 1997, astro-ph/9705237.

[66]  F. Honma Global Structure of Bimodal Accretion Disks around a Black Hole , 1996 .

[67]  R. Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994, astro-ph/9403052.

[68]  C. Norman,et al.  The collimation of magnetized winds , 1989 .

[69]  J. Lasota,et al.  Slim Accretion Disks , 1988 .

[70]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[71]  Roger D. Blandford,et al.  Relativistic jets as compact radio sources , 1979 .

[72]  R. Rosner,et al.  Structured coronae of accretion disks , 1979 .

[73]  S. Ichimaru Bimodal behavior of accretion disks: Theory and application to Cygnus X-1 transitions , 1977 .

[74]  E. Dishoeck,et al.  Annual Review of Astronomy and Astrophysics Introduction , 2020 .

[75]  Christina Freytag,et al.  Radiative Processes In Astrophysics , 2016 .

[76]  R. Keppens,et al.  The Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 5/14/03 RADIATIVELY INEFFICIENT MHD ACCRETION-EJECTION STRUCTURES , 2003 .

[77]  D. Raine,et al.  Accretion Power in Astrophysics: Third Edition , 2002 .

[78]  D. Raine,et al.  Accretion Power in Astrophysics: Contents , 2002 .

[79]  J. Stone,et al.  Dynamics of Line-driven Disk Winds in Active Galactic Nuclei , 2000 .

[80]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[81]  D. Raine,et al.  Accretion power in astrophysics , 1985 .

[82]  E. Phinney,et al.  Ion-supported tori and the origin of radio jets , 1982, Nature.