Three-color Ramsey numbers for paths
暂无分享,去创建一个
Endre Szemerédi | Gábor N. Sárközy | András Gyárfás | Miklós Ruszinkó | E. Szemerédi | M. Ruszinkó | A. Gyárfás | G. N. Sárközy
[1] Zoltán Füredi,et al. Covering t-element Sets by Partitions , 1991, Eur. J. Comb..
[2] E. J. Cockayne,et al. The Ramsey number for stripes , 1975 .
[3] János Komlós,et al. Proof of a Packing Conjecture of Bollobás , 1995, Combinatorics, Probability and Computing.
[4] Tomasz Luczak,et al. The Ramsey number for a triple of long even cycles , 2007, J. Comb. Theory, Ser. B.
[5] E. Szemerédi. Regular Partitions of Graphs , 1975 .
[6] B. Bollobás,et al. Extremal Graph Theory , 2013 .
[7] Richard H. Schelp,et al. Path Ramsey numbers in multicolorings , 1975 .
[8] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[9] János Komlós,et al. Blow-up Lemma , 1997, Combinatorics, Probability and Computing.
[10] Gábor N. Sárközy,et al. An algorithmic version of the blow-up lemma , 1998 .
[11] Frank Plumpton Ramsey,et al. On a Problem of Formal Logic , 1930 .
[12] Claude Berge,et al. Graphs and Hypergraphs , 2021, Clustering.
[13] Yoshiharu Kohayakawa,et al. The 3-colored Ramsey number of odd cycles , 2005, Electron. Notes Discret. Math..
[14] Edy Tri Baskoro,et al. On Ramsey-Type Problems , 2009 .
[15] Tomasz Luczak,et al. R(Cn, Cn, Cn)<=(4+o(1)) n , 1999, J. Comb. Theory, Ser. B.
[16] M. Simonovits,et al. Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .