Three-color Ramsey numbers for paths

We prove—for sufficiently large n—the following conjecture of Faudree and Schelp: $$R{\left( {P_{n} ,P_{n} ,P_{n} } \right)} = \left\{ {\begin{array}{*{20}c}{{2n - 1{\kern 1pt} \;{\text{for}}\;{\text{odd}}\;n,}} \\ {{{\text{2n - 2}}\;{\text{for}}\;{\text{even}}\;n,}} \\ \end{array} } \right.$$, for the three-color Ramsey numbers of paths on n vertices.

[1]  Zoltán Füredi,et al.  Covering t-element Sets by Partitions , 1991, Eur. J. Comb..

[2]  E. J. Cockayne,et al.  The Ramsey number for stripes , 1975 .

[3]  János Komlós,et al.  Proof of a Packing Conjecture of Bollobás , 1995, Combinatorics, Probability and Computing.

[4]  Tomasz Luczak,et al.  The Ramsey number for a triple of long even cycles , 2007, J. Comb. Theory, Ser. B.

[5]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[6]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[7]  Richard H. Schelp,et al.  Path Ramsey numbers in multicolorings , 1975 .

[8]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[9]  János Komlós,et al.  Blow-up Lemma , 1997, Combinatorics, Probability and Computing.

[10]  Gábor N. Sárközy,et al.  An algorithmic version of the blow-up lemma , 1998 .

[11]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[12]  Claude Berge,et al.  Graphs and Hypergraphs , 2021, Clustering.

[13]  Yoshiharu Kohayakawa,et al.  The 3-colored Ramsey number of odd cycles , 2005, Electron. Notes Discret. Math..

[14]  Edy Tri Baskoro,et al.  On Ramsey-Type Problems , 2009 .

[15]  Tomasz Luczak,et al.  R(Cn, Cn, Cn)<=(4+o(1)) n , 1999, J. Comb. Theory, Ser. B.

[16]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .