The Golay Code

In this chapter we describe one of the most important of all codes, the [24,12,8] extended Golay code.

[1]  J. Leech Notes on Sphere Packings , 1967, Canadian Journal of Mathematics.

[2]  N. Sloane,et al.  Sphere Packings and Error-Correcting Codes , 1971, Canadian Journal of Mathematics.

[3]  John H. Conway,et al.  A Group of Order 8,315,553,613,086,720,000 , 1969 .

[4]  V. Pless On the uniqueness of the Golay codes , 1968 .

[5]  M. Karlin,et al.  New binary coding results by circulants , 1969, IEEE Trans. Inf. Theory.

[6]  J. Macwilliams A theorem on the distribution of weights in a systematic code , 1963 .

[7]  Jean-Marie Goethals,et al.  On the Golay Perfect Binary Code , 1971, J. Comb. Theory, Ser. A.

[8]  H. Mattson,et al.  New 5-designs , 1969 .

[9]  Jean-Marie Goethals,et al.  Nearly perfect binary codes , 1972, Discret. Math..

[10]  O. Perron,et al.  Bemerkungen über die Verteilung der quadratischen Reste , 1952 .

[11]  Elwyn R. Berlekamp,et al.  Coding Theory and the Mathieu Groups , 1971, Inf. Control..

[12]  Lowell J. Paige,et al.  A Note on the Mathieu Groups , 1957, Canadian Journal of Mathematics.

[13]  J. Leech Some Sphere Packings in Higher Space , 1964, Canadian Journal of Mathematics.

[14]  N. Sloane,et al.  New sphere packings in dimensions 9–15 , 1970 .

[15]  J H Conway A perfect group of order 8,315,553,613,086,720,000 and the sporadic simple groups. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[16]  N. J. A. Sloane,et al.  New binary codes , 1972, IEEE Trans. Inf. Theory.

[17]  John H. Conway,et al.  A characterisation of Leech's lattice , 1969 .