A self‐consistent model of the Jovian auroral thermal structure

A one-dimensional (1-D) model coupling a two-stream electron transport model of energy deposition with a 1-D thermal conduction model has been developed. It is applied to investigate the links between auroral heat input and the vertical temperature of Jupiter's upper atmosphere. Two energy distributions meant to reproduce the emissions of a diffuse and a discrete aurora are used to evaluate the importance of the energy spectrum of the incident electrons for the thermal balance of Jupiter's auroral thermosphere. The values of observable quantities such as the altitude of the H2 emission peak, thermal infrared (IR), ultraviolet (UV) emissions, and temperatures associated with various optical signatures are used to constrain the parameters of these distributions. It is shown that the high-energy component of these energy distributions heats a region of the homosphere between 10−4 and 10−6 bar and mainly controls the H2 temperature and the far-UV (FUV) emission. A 3-keV soft electron component is necessary to heat the region directly above the homopause, between 10−6 and 10−9 bar. It has a large influence on the H2 and H3+ temperatures and on the H3+ near-IR (NIR) emission. It is used in conjunction with a weak 100 eV component which is responsible for heating the thermosphere, from 10−9 to 10−12 bar and exerts a control on the exospheric temperature. The calculated temperatures, UV, and IR emissions suggest that the model probably misses a nonparticle heat source in the 10−5 bar region, that is expected to balance the strong hydrocarbon cooling. Sensitivity tests are performed to evaluate the importance of the parameters of the energy distributions. They show that the FUV color ratio increases with the characteristic energy (or high-energy cutoff) of the high-energy component, while the H2 rovibrational temperature varies inversely. A trade-off is therefore necessary for these two parameters to simultaneously meet their observational constraints. Further tests demonstrate the essential thermostatic role played by H3+, which regulates the net heating in the thermosphere. An increased eddy diffusion reproduces the effect of a possible auroral upwelling of methane but gives rise to an H2 temperature smaller than the observed value.

[1]  G. Mount,et al.  Photoabsorption cross sections of methane and ethane, 1380-1600 A, at T equals 295 K and T equals 200 K. [in Jupiter atmosphere] , 1978 .

[2]  M. Allen,et al.  Hydrocarbon photochemistry in the upper atmosphere of Jupiter. , 1991, Icarus.

[3]  Jonathan Tennyson,et al.  Infrared emissions of H3(+) in the atmosphere of Jupiter in the 2. 1 and 4. 0 micron region , 1990 .

[4]  Pierre Drossart,et al.  H3(+) fundamental band in Jupiter's auroral zones at high resolution from 2400 to 2900 inverse centimeters , 1990 .

[5]  R. Elsner,et al.  ROSAT observations of the Jupiter aurora , 1994 .

[6]  Y. Yung,et al.  H2 fluorescence spectrum from 1200 to 1700 A by electron impact - Laboratory study and application to Jovian aurora , 1982 .

[7]  B. Moiseiwitsch Elastic Scattering of Electrons , 1962 .

[8]  J. Clarke,et al.  Line profile of H Lyman α from dissociative excitation of H2 with application to Jupiter , 1995 .

[9]  D. Schultz,et al.  Ultraviolet Emission from Oxygen Precipitating into Jovian Aurora , 2000 .

[10]  A. Vasavada,et al.  Imaging Jupiter's Aurora at Visible Wavelengths , 1998 .

[11]  J. Waite,et al.  The precipitation of energetic heavy ions into the upper atmosphere of Jupiter , 1988 .

[12]  M. Glass-Maujean Transition probabilities for the D and B′ vibrational levels to the X vibrational levels and continuum of H2 , 1984 .

[13]  J. Gérard,et al.  Morphology and time variation of the Jovian Far UV aurora: Hubble Space Telescope observations , 1993 .

[14]  W. Huntress,et al.  Ion‐molecule reactions and vibrational deactivation of H2+ ions in mixtures of hydrogen and helium , 1974 .

[15]  H. Hanley,et al.  The Viscosity and Thermal Conductivity of Dilute Gaseous Hydrogen from 15 to 5000 K. , 1970, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[16]  P. Sigray,et al.  Destruction Rate of H3+ by Low-Energy Electrons Measured in a Storage-Ring Experiment , 1994, Science.

[17]  Pierre Drossart,et al.  Line-resolved spectroscopy of the Jovian H3+ auroral emission at 3.5 micrometers , 1993 .

[18]  D. Shemansky,et al.  Electron excitation of the H2(a 3Sigma(g)(+) - b 3Sigma(u)(+)) continuum in the vacuum ultraviolet , 1993 .

[19]  P. Drossart,et al.  Equatorial X-ray Emissions: Implications for Jupiter's High Exospheric Temperatures , 1997, Science.

[20]  A. Dalgarno,et al.  Transition probabilities of the B' /sup 1/. sigma. /sub u//sup +/. -->. X /sup 1/. sigma. /sub g//sup +/ system of molecular hydrogen , 1985 .

[21]  T. Rescigno,et al.  An ab initio treatment of near-threshold vibrational excitation of H2 by electron impact: new perspectives on discrepancies between crossed-beam and swarm data , 1993 .

[22]  R. Prangé,et al.  On the Existence of Supersonic Jets in the Upper Atmosphere of Jupiter , 1995 .

[23]  S. Jaskulek,et al.  The Galileo Energetic Particles Detector , 1992 .

[24]  J. Blamont,et al.  Extreme Ultraviolet Observations from Voyager 1 Encounter with Jupiter , 1979, Science.

[25]  T. Märk,et al.  Mass spectrometric determination of partial electron impact ionization cross sections of He, Ne, Ar and Kr from threshold up to 180 eV , 1980 .

[26]  A. Green,et al.  ANALYTIC EXPRESSION FOR THE ENERGY-TRANSFER RATE FROM PHOTOELECTRONS TO THERMAL ELECTRONS. , 1971 .

[27]  D. Auerbach,et al.  Merged electron-ion beam experiments. I. Method and measurements of (e-H2+) and (e-H3+) dissociative-recombination cross sections , 1977 .

[28]  J. Gérard,et al.  The Longitudinal Variation of the Color Ratio of the Jovian Ultraviolet Aurora: A Geometric Effect? , 1998 .

[29]  D. Hunten,et al.  Soft electrons as a possible heat source for Jupiter's thermosphere , 1977 .

[30]  Donald E. Shemansky,et al.  Electron‐impact excitation and emission cross sections of the H2 Lyman and Werner Systems , 1998 .

[31]  A. Nagy,et al.  Concerning the influence of elastic scattering upon photoelectron transport and escape , 1970 .

[32]  J. Gérard,et al.  Auroral Lyman α and H2 bands from the giant planets: 1. Excitation by proton precipitation in the Jovian atmosphere , 1994 .

[33]  A. Green,et al.  Electron excitation of a Jovian aurora , 1973 .

[34]  T. L. Stephens,et al.  DISCRETE ABSORPTION AND PHOTODISSOCIATION OF MOLECULAR HYDROGEN. , 1970 .

[35]  Morrison,et al.  Near-threshold vibrational excitation of H2 by electron impact: Resolution of discrepancies between experiment and theory. , 1990, Physical review letters.

[36]  F. Linder,et al.  Rotational and Vibrational Excitation of H2 by Slow Electron Impact , 1971 .

[37]  J. Caldwell,et al.  Possible infrared aurorae on Jupiter , 1980 .

[38]  M. Dougherty,et al.  Field-aligned currents in the Jovian magnetosphere during the Ulysses flyby , 1993 .

[39]  G. Gladstone,et al.  HST Spectra of the Jovian Ultraviolet Aurora: Search for Heavy Ion Precipitation , 1998 .

[40]  Sundström,et al.  Branching processes in the dissociative recombination of H3+ , 1995, Physical review letters.

[41]  R. Baron,et al.  Emission Source Model of Jupiter's H+3Aurorae: A Generalized Inverse Analysis of Images , 1996 .

[42]  J. Caldwell,et al.  Temperatures and Altitudes of Jupiter's Ultraviolet Aurora Inferred from GHRS Observations with the Hubble Space Telescope , 1997 .

[43]  J. H. Waite,et al.  A Remarkable Auroral Event on Jupiter Observed in the Ultraviolet with the Hubble Space Telescope , 1994, Science.

[44]  Theodor Kostiuk,et al.  Temperature and abundances in the Jovian auroral stratosphere: 1. Ethane as a probe of the millibar region , 1993 .

[45]  K. L. Thompson,et al.  Unidentified emission lines in Jupiter's Northern and Southern 2 micron Aurorae , 1989 .

[46]  D. Shemansky,et al.  Electron impact excitation of H2 - Rydberg band systems and the benchmark dissociative cross section for H Lyman-alpha , 1985 .

[47]  Roger V. Yelle,et al.  Gravity Waves in Jupiter's Thermosphere , 1997, Science.

[48]  A. Dalgarno,et al.  The ultraviolet spectra of the Jovian aurora , 1996 .

[49]  Unnikrishnan,et al.  Electron-impact excitation of the n=3 and n=2 states of a hydrogen atom at intermediate (14-100-eV) energies. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[50]  D. Strobel,et al.  Heating of Jupiter's Thermosphere by Dissipation of Gravity Waves Due to Molecular Viscosity and Heat Conduction , 1998 .

[51]  R. Multari,et al.  High-Resolution Electron-Impact Study of the Far-Ultraviolet Emission Spectrum of Molecular Hydrogen , 1995 .

[52]  M. Khakoo,et al.  Differential cross sections for the electron impact excitation of the b 3Sigmau+ continuum of molecular hydrogen , 1994 .

[53]  F. Kaufman,et al.  Gas Phase Kinetics of H+H+H2→2H2 , 1970 .

[54]  W. Sharp,et al.  Angular distributions of electrons elastically scattered from H 2 , 1981 .

[55]  W. Huntress,et al.  Reactions of excited and ground state H3+ ions with simple hydrides and hydrocarbons: collisional deactivation of vibrationally excited H3+ ions , 1974 .

[56]  J. Gérard,et al.  A model of energy deposition of energetic electrons and EUV emission in the Jovian and Saturnian atmospheres and implications , 1982 .

[57]  C. Jackman,et al.  Electron impact on atmospheric gases, I. Updated cross sections , 1977 .

[58]  P. Feldman,et al.  Self‐absorption by vibrationally excited H2 in the Astro‐2 Hopkins Ultraviolet Telescope spectrum of the Jovian aurora , 1998 .

[59]  J. Gérard,et al.  High-resolution spectra of Jupiter's northern auroral ultraviolet emission with the Hubble Space Telescope , 1994 .

[60]  A. Nagy,et al.  Photoelectron fluxes in the ionosphere , 1970 .

[61]  Thomas E. Cravens,et al.  Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere , 1983 .

[62]  W. Harris,et al.  Analysis of Jovian Auroral H Ly-α Emission (1981–1991) , 1996 .

[63]  G. Schubert,et al.  Thermal structure of Jupiter's atmosphere near the edge of a 5‐μm hot spot in the north equatorial belt , 1998 .

[64]  J. H. Waite,et al.  Thermal profiles in the auroral regions of Jupiter , 1993 .

[65]  Khakoo,et al.  Electron-impact excitation of the a 3 Sigma g+, B 1 Sigma u+, c 3 Pi u, and C 1 Pi u states of H2. , 1986, Physical review. A, General physics.

[66]  R. Thompson,et al.  Electron‐Impact Cross Sections and Energy Deposition in Molecular Hydrogen , 1972 .

[67]  J. H. Waite,et al.  Detection of H3+ on Jupiter , 1989, Nature.

[68]  G. Gladstone Radiative Transfer and Photochemistry in the Upper Atmosphere of Jupiter , 1983 .

[69]  J. Gérard,et al.  Diagnostics of the Jovian Aurora Deduced from Ultraviolet Spectroscopy: Model and HST/GHRS Observations , 2000 .

[70]  A. Vasavada,et al.  Jupiter's visible aurora and Io footprint , 1999 .

[71]  Donald E. Shemansky,et al.  High-resolution far ultraviolet emission spectra of electron-excited molecular deuterium , 1999 .

[72]  W. Pryor,et al.  The middle ultraviolet‐visible spectrum of H2 excited by electron impact , 1998 .

[73]  D. Hunten,et al.  Helium in Jupiter's atmosphere: Results from the Galileo probe Helium Interferometer Experiment , 1998 .

[74]  T. L. Stephens,et al.  Kinetic energy in the spontaneous radiative dissociation of molecular hydrogen , 1973 .

[75]  J. Trauger,et al.  Simultaneous Spectroscopy and Imaging of the Jovian Aurora with the Hopkins Ultraviolet Telescope and the Hubble Space Telescope , 1995 .

[76]  Y. H. Kim,et al.  Densities and vibrational distribution of H3 + in the Jovian auroral ionosphere , 1991 .

[77]  D. Shemansky,et al.  Cross sections for production of H(2p, 2s, 1s) by electron collisional dissociation of H2 , 1991 .

[78]  J. Tennyson,et al.  A High-Temperature Partition Function for H3+ , 1995 .

[79]  K. A. Smith,et al.  Absolute partial cross sections for electron-impact ionization of CH_4, H_2O, and D_2O from threshold to 1000 eV. , 1996 .

[80]  Jonathan Tennyson,et al.  A baseline spectroscopic study of the infrared auroras of Jupiter , 1997 .

[81]  Yuk L. Yung,et al.  Studies of extreme-ultraviolet emission from Rydberg series of H_2 by electron impact , 1984 .

[82]  J. Perry,et al.  Chemistry of the Jovian auroral ionosphere , 1999 .

[83]  H. Porter,et al.  Relativistic yield spectra for H2 , 1977 .

[84]  A. Green,et al.  Ionization cross sections and secondary electron distributions , 1972 .

[85]  D. Strobel,et al.  Long‐term study of longitudinal dependence in primary particle precipitation in the north Jovian aurora , 1990 .

[86]  J. Gérard,et al.  Hubble Space Telescope Goddard high-resolution spectrograph H2 rotational spectra of Jupiter's aurora , 1994 .

[87]  J. Gérard,et al.  Simulation of the Morphology of the Jovian UV North Aurora Observed with the Hubble Space Telescope , 1997 .

[88]  I. Dabrowski The Lyman and Werner bands of H2 , 1984 .

[89]  Nicholas Achilleos,et al.  Supersonic winds in Jupiter's aurorae , 1999, Nature.

[90]  È. Roueff,et al.  The Emission Continuum of Electron-excited Molecular Hydrogen , 1997 .

[91]  T. L. Stephens,et al.  Spontaneous radiative dissociation in molecular hydrogen , 1972 .

[92]  J. H. Waite,et al.  Hubble Space Telescope imaging of Jupiter's UV aurora during the Galileo orbiter mission , 1998 .