A >3000 suns high concentrator photovoltaic design based on multiple Fresnel lens primaries focusing to one central solar cell

[1]  Tapas K. Mallick,et al.  Prototype fabrication and experimental investigation of a conjugate refractive reflective homogeniser in a cassegrain concentrator , 2017 .

[2]  Marta Victoria,et al.  Design and modeling of a cost-effective achromatic Fresnel lens for concentrating photovoltaics. , 2016, Optics express.

[3]  Eduardo F. Fernández,et al.  Performance, limits and economic perspectives for passive cooling of High Concentrator Photovoltaics , 2016 .

[4]  Tapas K. Mallick,et al.  Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design , 2016 .

[5]  Eduardo F. Fernández,et al.  Theoretical investigation considering manufacturing errors of a high concentrating photovoltaic of cassegrain design and its experimental validation , 2016 .

[6]  F. Almonacid,et al.  Optical design of a 4-off-axis-unit Cassegrain ultra-high concentrator photovoltaics module with a central receiver. , 2016, Optics letters.

[7]  K. Reddy,et al.  Conjugate refractive–reflective homogeniser in a 500× Cassegrain concentrator: design and limits , 2016 .

[8]  S. Bruns,et al.  Deposition of abrasion resistant single films and antireflective coatings on sapphire , 2016 .

[9]  Thorsten Hornung,et al.  The distance temperature map as method to analyze the optical properties of Fresnel lenses and their interaction with multi-junction solar cells , 2015 .

[10]  Tapas K. Mallick,et al.  Enhancing ultra-high CPV passive cooling using least-material finned heat sinks , 2015 .

[11]  Tapas K. Mallick,et al.  High-Concentration Optics for Photovoltaic Applications , 2015 .

[12]  Aggelos Zacharopoulos,et al.  Chapter 15. Building Integration of High Concentration Photovoltaic Systems , 2015 .

[13]  Andreas W. Bett,et al.  Development and investigation of a CPV module with Cassegrain mirror optics , 2014 .

[14]  K. O'Donnell,et al.  Use of energy-filtered photoelectron emission microscopy and Kelvin probe force microscopy to visualise work function changes on diamond thin films terminated with oxygen and lithium mono-layers for thermionic energy conversion , 2014 .

[15]  A. Tünnermann,et al.  Antireflection coating for sapphire with consideration of mechanical properties , 2014 .

[16]  Aldo Steinfeld,et al.  Performance of compound parabolic concentrators with polygonal apertures , 2013 .

[17]  S. Habraken,et al.  Nonimaging achromatic shaped Fresnel lenses for ultrahigh solar concentration. , 2013, Optics letters.

[18]  Rubén Mohedano,et al.  Free-form optics for Fresnel-lens-based photovoltaic concentrators. , 2013, Optics express.

[19]  J. Gordon,et al.  Temperature dynamics of multijunction concentrator solar cells up to ultra‐high irradiance , 2013 .

[20]  Jerôme Loicq,et al.  Performance of solar concentrator made of an achromatic Fresnel doublet measured with a continuous solar simulator and comparison with a singlet , 2013 .

[21]  S. Gwo,et al.  Carrier dynamics in InN nanorod arrays , 2012, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR).

[22]  Jae Su Yu,et al.  Wafer-scale highly-transparent and superhydrophilic sapphires for high-performance optics. , 2012, Optics express.

[23]  Juan Carlos Miñano,et al.  Photovoltaic performance of the dome-shaped Fresnel-Köhler concentrator , 2012, Other Conferences.

[24]  Gilles Flamant,et al.  Very high fluxes for concentrating photovoltaics: Considerations from simple experiments and modeling , 2012 .

[25]  Ana Belén Cristóbal López,et al.  Next Generation of Photovoltaics , 2012 .

[26]  M. Steiner,et al.  Estimation of the influence of Fresnel lens temperature on energy generation of a concentrator photovoltaic system , 2012 .

[27]  J. Gordon,et al.  Double-tailored nonimaging reflector optics for maximum-performance solar concentration. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  Andreas Gombert,et al.  Temperature and wavelength dependent measurement and simulation of Fresnel lenses for concentrating photovoltaics , 2010, Photonics Europe.

[29]  I. Antón,et al.  Comparative analysis of different secondary optical elements for aspheric primary lenses. , 2009, Optics express.

[30]  L. Yin,et al.  Brittle materials in nano-abrasive fabrication of optical mirror-surfaces , 2008 .

[31]  Daniel Feuermann,et al.  Photovoltaic characterization of concentrator solar cells by localized irradiation , 2006 .

[32]  Roland Winston,et al.  Planar concentrators near the étendue limit. , 2005, Optics letters.

[33]  J. Gordon,et al.  Toward ultrahigh-flux photovoltaic concentration , 2004 .

[34]  A. Duparré,et al.  Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components. , 2002, Applied optics.

[35]  J. E. Peterson,et al.  An Off-Axis Cassegrain Optimal Design for Short Focal Length Parabolic Solar Concentrators , 1995 .

[36]  오근호,et al.  Sapphire 결정 성장 , 1986 .

[37]  Irving H. Malitson,et al.  Refraction and Dispersion of Synthetic Sapphire , 1962 .