Oesophageal adenocarcinoma and gastric cancer: should we mind the gap?

[1]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[2]  S. Leach,et al.  Expression of Activated Ras in Gastric Chief Cells of Mice Leads to the Full Spectrum of Metaplastic Lineage Transitions. , 2016, Gastroenterology.

[3]  N. Nagarajan,et al.  Mutational spectrum of Barrett's stem cells suggests paths to initiation of a precancerous lesion , 2016, Nature Communications.

[4]  P. Martinez,et al.  Evolution of oesophageal adenocarcinoma from metaplastic columnar epithelium without goblet cells in Barrett's oesophagus , 2015, Gut.

[5]  A. Chak,et al.  Association of Serum Levels of Adipokines and Insulin With Risk of Barrett's Esophagus: A Systematic Review and Meta-Analysis. , 2015, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[6]  H. Tomita,et al.  Mist1 Expressing Gastric Stem Cells Maintain the Normal and Neoplastic Gastric Epithelium and Are Supported by a Perivascular Stem Cell Niche. , 2015, Cancer cell.

[7]  M. Vieth,et al.  Systematic review: the effects of long‐term proton pump inhibitor use on serum gastrin levels and gastric histology , 2015, Alimentary pharmacology & therapeutics.

[8]  Xiaoxin L Chen,et al.  Surgical Models of Gastroesophageal Reflux with Mice. , 2015, Journal of visualized experiments : JoVE.

[9]  Patricia L. Blount,et al.  High Goblet Cell Count Is Inversely Associated with Ploidy Abnormalities and Risk of Adenocarcinoma in Barrett’s Esophagus , 2015, PloS one.

[10]  M. Asashima,et al.  Generation of stomach tissue from mouse embryonic stem cells , 2015, Nature Cell Biology.

[11]  S. Tavaré,et al.  Whole-genome sequencing provides new insights into the clonal architecture of Barrett’s esophagus and esophageal adenocarcinoma , 2015, Nature Genetics.

[12]  Teresa L. Mastracci,et al.  Krt19(+)/Lgr5(-) Cells Are Radioresistant Cancer-Initiating Stem Cells in the Colon and Intestine. , 2015, Cell stem cell.

[13]  A. McKenna,et al.  Paired Exome Analysis of Barrett’s Esophagus and Adenocarcinoma , 2015, Nature Genetics.

[14]  R. Nusse,et al.  Helicobacter pylori Activates and Expands Lgr5(+) Stem Cells Through Direct Colonization of the Gastric Glands. , 2015, Gastroenterology.

[15]  A. Bass,et al.  Genetic and Epigenetic Alterations in Barrett's Esophagus and Esophageal Adenocarcinoma. , 2015, Gastroenterology clinics of North America.

[16]  Jason G. Jin,et al.  Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes , 2015, Nature Medicine.

[17]  C. Wijmenga,et al.  Polymorphisms Near TBX 5 and GDF 7 Are Associated With Increased Risk for Barrett ’ s , 2017 .

[18]  Paz Polak,et al.  Cell-of-origin chromatin organization shapes the mutational landscape of cancer , 2015, Nature.

[19]  J. Wardle,et al.  Sleep and nighttime energy consumption in early childhood: a population‐based cohort study , 2015, Pediatric obesity.

[20]  A. van Oudenaarden,et al.  Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2 , 2014, Nature Communications.

[21]  P. D. De Leyn,et al.  Signet Ring Cells in Esophageal and Gastroesophageal Junction Carcinomas Have a More Aggressive Biological Behavior , 2014, Annals of surgery.

[22]  K. Hoberg,et al.  Global overview , 2014, Nature.

[23]  S. Chanock,et al.  Obesity and risk of esophageal adenocarcinoma and Barrett's esophagus: a Mendelian randomization study. , 2014, Journal of the National Cancer Institute.

[24]  Stephanie Grainger,et al.  Cdx1 and Cdx2 Function as Tumor Suppressors , 2014, The Journal of Biological Chemistry.

[25]  A. van den Berg,et al.  Embryological signaling pathways in Barrett's metaplasia development and malignant transformation; mechanisms and therapeutic opportunities. , 2014, Critical reviews in oncology/hematology.

[26]  K. Yan,et al.  Body mass index and risk of gastric cancer: a meta-analysis. , 2014, Japanese journal of clinical oncology.

[27]  H. Tomita,et al.  Denervation suppresses gastric tumorigenesis , 2014, Science Translational Medicine.

[28]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of gastric adenocarcinoma , 2014, Nature.

[29]  H. Ng,et al.  Regulatory crosstalk between lineage-survival oncogenes KLF5, GATA4 and GATA6 cooperatively promotes gastric cancer development , 2014, Gut.

[30]  T. Wang,et al.  CCK2R identifies and regulates gastric antral stem cell states and carcinogenesis , 2014, Gut.

[31]  Rebecca C Fitzgerald,et al.  Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis , 2014, Nature Genetics.

[32]  Atsushi Tanaka,et al.  Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma , 2014, Nature Genetics.

[33]  Shibing Deng,et al.  Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer , 2014, Nature Genetics.

[34]  P. Funch‐jensen,et al.  Proton pump inhibitor use may not prevent high‐grade dysplasia and oesophageal adenocarcinoma in Barrett's oesophagus: a nationwide study of 9883 patients , 2014, Alimentary pharmacology & therapeutics.

[35]  Andreas H. Nuber,et al.  Long-lived intestinal tuft cells serve as colon cancer-initiating cells. , 2014, The Journal of clinical investigation.

[36]  H. Barr,et al.  The stem cell organisation, and the proliferative and gene expression profile of Barrett's epithelium, replicates pyloric-type gastric glands , 2014, Gut.

[37]  P. Schoenfeld,et al.  Association between Helicobacter pylori and Barrett's esophagus, erosive esophagitis, and gastroesophageal reflux symptoms. , 2014, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[38]  W. Kim,et al.  Distribution of LGR5 + Cells and Associated Implications during the Early Stage of Gastric Tumorigenesis , 2013, PloS one.

[39]  X. Shirley Liu,et al.  An integrative analysis reveals functional targets of GATA6 transcriptional regulation in gastric cancer , 2013, Oncogene.

[40]  Kenneth K Wang,et al.  Genome-wide methylation analysis shows similar patterns in Barrett's esophagus and esophageal adenocarcinoma. , 2013, Carcinogenesis.

[41]  C. Reed,et al.  Adenocarcinoma of the esophagus with signet ring cell features portends a poor prognosis. , 2013, The Annals of thoracic surgery.

[42]  Carissa A. Sanchez,et al.  Temporal and Spatial Evolution of Somatic Chromosomal Alterations: A Case-Cohort Study of Barrett's Esophagus , 2013, Cancer Prevention Research.

[43]  H. El‐Serag,et al.  Acid-suppressive medications and risk of oesophageal adenocarcinoma in patients with Barrett's oesophagus: a systematic review and meta-analysis , 2013, Gut.

[44]  Roopma Wadhwa,et al.  Gastric cancer—molecular and clinical dimensions , 2013, Nature Reviews Clinical Oncology.

[45]  M. Loeffler,et al.  Lgr5(+) gastric stem cells divide symmetrically to effect epithelial homeostasis in the pylorus. , 2013, Cell reports.

[46]  S. Chanock,et al.  A Genome-Wide Association Study Identifies New Susceptibility Loci for Esophageal Adenocarcinoma and Barrett’s Esophagus , 2013, Nature Genetics.

[47]  H. Clevers,et al.  Differentiated Troy + Chief Cells Act as Reserve Stem Cells to Generate All Lineages of the Stomach Epithelium , 2013, Cell.

[48]  J. Seenan,et al.  Central obesity in asymptomatic volunteers is associated with increased intrasphincteric acid reflux and lengthening of the cardiac mucosa. , 2013, Gastroenterology.

[49]  J. Rehfeld,et al.  Characterization of gastrins and their receptor in solid human gastric adenocarcinomas , 2013, Scandinavian journal of gastroenterology.

[50]  Xiaolin Wang,et al.  Body Mass Index and Risk of Gastric Cancer: A Meta-analysis of a Population with More Than Ten Million from 24 Prospective Studies , 2013, Cancer Epidemiology, Biomarkers & Prevention.

[51]  S. Meltzer,et al.  Hypomethylation of noncoding DNA regions and overexpression of the long noncoding RNA, AFAP1-AS1, in Barrett's esophagus and esophageal adenocarcinoma. , 2013, Gastroenterology.

[52]  T. Wang,et al.  Obesity accelerates Helicobacter felis-induced gastric carcinogenesis by enhancing immature myeloid cell trafficking and TH17 response , 2013, Gut.

[53]  N. Hayward,et al.  The risk of Barrett's esophagus associated with abdominal obesity in males and females , 2013, International journal of cancer.

[54]  Sang Min Park,et al.  Acid suppressive drugs and gastric cancer: a meta-analysis of observational studies. , 2013, World journal of gastroenterology.

[55]  A. Neugut,et al.  Diverging Trends in the Incidence of Reflux-related and Helicobacter pylori-related Gastric Cardia Cancer , 2013, Journal of clinical gastroenterology.

[56]  A. McKenna,et al.  Exome and whole genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity , 2013, Nature Genetics.

[57]  K. Chayama,et al.  High Expression of Gastrin Receptor Protein in Injured Mucosa of Helicobacter pylori-Positive Gastritis , 2013, Digestive Diseases and Sciences.

[58]  H. Clevers,et al.  Intestinal Tumorigenesis Initiated by Dedifferentiation and Acquisition of Stem-Cell-like Properties , 2013, Cell.

[59]  A. Meloni-Ehrig,et al.  Gastric cancer: Classification, histology and application of molecular pathology. , 2012, Journal of gastrointestinal oncology.

[60]  M. Meyerson,et al.  Gastrointestinal adenocarcinomas of the esophagus, stomach, and colon exhibit distinct patterns of genome instability and oncogenesis. , 2012, Cancer research.

[61]  Yuchen Jiao,et al.  Comparative genomic analysis of esophageal adenocarcinoma and squamous cell carcinoma. , 2012, Cancer discovery.

[62]  F. McKeon,et al.  Cellular origin of Barrett's esophagus: controversy and therapeutic implications. , 2012, Gastroenterology.

[63]  C. Röcken,et al.  The Spatial Distribution of LGR5+ Cells Correlates With Gastric Cancer Progression , 2012, PloS one.

[64]  Bin Tean Teh,et al.  Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes , 2012, Nature Genetics.

[65]  Bruce J. Aronow,et al.  The Pan-ErbB Negative Regulator Lrig1 Is an Intestinal Stem Cell Marker that Functions as a Tumor Suppressor , 2012, Cell.

[66]  Stephanie Grainger,et al.  Cdx function is required for maintenance of intestinal identity in the adult. , 2012, Developmental biology.

[67]  M. Meyerson,et al.  Activation of GATA binding protein 6 (GATA6) sustains oncogenic lineage-survival in esophageal adenocarcinoma , 2012, Proceedings of the National Academy of Sciences.

[68]  Khay Guan Yeoh,et al.  A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets , 2012, Gut.

[69]  T. Wang,et al.  Stromal cell-derived factor-1 overexpression induces gastric dysplasia through expansion of stromal myofibroblasts and epithelial progenitors , 2012, Gut.

[70]  C. Lightdale,et al.  Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. , 2012, Cancer cell.

[71]  T. Graham,et al.  Barrett's metaplasia glands are clonal, contain multiple stem cells and share a common squamous progenitor , 2011, Gut.

[72]  R. Coffey,et al.  Spasmolytic polypeptide-expressing metaplasia (SPEM) in the gastric oxyntic mucosa does not arise from Lgr5-expressing cells , 2011, Gut.

[73]  M. Capecchi,et al.  The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations , 2011, Proceedings of the National Academy of Sciences.

[74]  H. Aburatani,et al.  Classification of Epstein-Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes. , 2011, Cancer research.

[75]  O. Klein,et al.  A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable , 2011, Nature.

[76]  K. Hochedlinger,et al.  Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. , 2011, Cell stem cell.

[77]  G. Chejfec,et al.  Barrett's esophagus: prevalence–incidence and etiology–origins , 2011, Annals of the New York Academy of Sciences.

[78]  Khek Yu Ho,et al.  Residual Embryonic Cells as Precursors of a Barrett's-like Metaplasia , 2011, Cell.

[79]  A. Iafrate,et al.  Clinicopathologic and Molecular Profiles of Microsatellite Unstable Barrett Esophagus-associated Adenocarcinoma , 2011, The American journal of surgical pathology.

[80]  R. Shivdasani,et al.  Notch signaling in stomach epithelial stem cell homeostasis , 2011, The Journal of experimental medicine.

[81]  C. Lightdale,et al.  Correlation between serum gastrin and cellular proliferation in Barrett’s esophagus , 2011, Therapeutic advances in gastroenterology.

[82]  H. Tomita,et al.  Inhibition of gastric carcinogenesis by the hormone gastrin is mediated by suppression of TFF1 epigenetic silencing. , 2011, Gastroenterology.

[83]  Hiroyuki Tomita,et al.  Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. , 2011, Cancer cell.

[84]  R. Shivdasani,et al.  Gastric epithelial stem cells. , 2011, Gastroenterology.

[85]  D. Forman,et al.  Polymorphisms in inflammatory response genes and their association with gastric cancer: A HuGE systematic review and meta-analyses. , 2011, American journal of epidemiology.

[86]  A. Shabbir,et al.  Cancer of the Gastric Cardia is Rising in Incidence in an Asian Population and is Associated with Adverse Outcome , 2011, World Journal of Surgery.

[87]  B. Hogan,et al.  BMP signaling in the development of the mouse esophagus and forestomach , 2010, Development.

[88]  J. Mills,et al.  Mature chief cells are cryptic progenitors for metaplasia in the stomach. , 2010, Gastroenterology.

[89]  A. Rustgi,et al.  K-ras mutation targeted to gastric tissue progenitor cells results in chronic inflammation, an altered microenvironment, and progression to intraepithelial neoplasia. , 2010, Cancer research.

[90]  P. Malfertheiner,et al.  H. pylori Infection Is a Key Risk Factor for Proximal Gastric Cancer , 2010, Digestive Diseases and Sciences.

[91]  Kenneth K Wang,et al.  Genome-Wide Catalogue of Chromosomal Aberrations in Barrett's Esophagus and Esophageal Adenocarcinoma: A High-Density Single Nucleotide Polymorphism Array Analysis , 2010, Cancer Prevention Research.

[92]  J. Mills,et al.  Spasmolytic polypeptide-expressing metaplasia and intestinal metaplasia: time for reevaluation of metaplasias and the origins of gastric cancer. , 2010, Gastroenterology.

[93]  W. Tsai,et al.  Elevated Serum Gastrin Is Associated With a History of Advanced Neoplasia in Barrett's Esophagus , 2010, The American Journal of Gastroenterology.

[94]  H. Mashimo,et al.  Lgr5, an intestinal stem cell marker, is abnormally expressed in Barrett's esophagus and esophageal adenocarcinoma. , 2010, Diseases of the esophagus : official journal of the International Society for Diseases of the Esophagus.

[95]  Hans Clevers,et al.  Coexistence of Quiescent and Active Adult Stem Cells in Mammals , 2010, Science.

[96]  Derek Y. Chiang,et al.  The landscape of somatic copy-number alteration across human cancers , 2010, Nature.

[97]  Hans Clevers,et al.  Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. , 2010, Cell stem cell.

[98]  Ming-Tsang Wu,et al.  Association between Helicobacter pylori seropositivity and digestive tract cancers. , 2009, World journal of gastroenterology.

[99]  Bo Chen,et al.  Overweight, obesity and gastric cancer risk: results from a meta-analysis of cohort studies. , 2009, European journal of cancer.

[100]  T. Graham,et al.  Long-term proton pump induced hypergastrinaemia does induce lineage-specific restitution but not clonal expansion in benign Barrett's oesophagus in vivo , 2009, Gut.

[101]  Jacques Ferlay,et al.  Recent patterns in gastric cancer: A global overview , 2009, International journal of cancer.

[102]  Stephanie Grainger,et al.  Cdx2 regulates patterning of the intestinal epithelium. , 2009, Developmental biology.

[103]  K. Kaestner,et al.  Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. , 2009, Developmental cell.

[104]  J. Olsen,et al.  Proton pump inhibitors and risk of gastric cancer: a population-based cohort study , 2009, British Journal of Cancer.

[105]  S. DeMeester Epidemiology and biology of esophageal cancer. , 2009, Gastrointestinal cancer research : GCR.

[106]  Hans Clevers,et al.  Crypt stem cells as the cells-of-origin of intestinal cancer , 2009, Nature.

[107]  H. Mashimo,et al.  Immunostaining of Lgr5, an Intestinal Stem Cell Marker, in Normal and Premalignant Human Gastrointestinal Tissue , 2008, TheScientificWorldJournal.

[108]  G. Bhagat,et al.  Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. , 2008, Cancer cell.

[109]  Kamran Ayub,et al.  Cell Proliferation, Cell Cycle Abnormalities, and Cancer Outcome in Patients with Barrett's Esophagus: A Long-term Prospective Study , 2008, Clinical Cancer Research.

[110]  F. Islami,et al.  Helicobacter pylori and Esophageal Cancer Risk: A Meta-analysis , 2008, Cancer Prevention Research.

[111]  D. Fleischer,et al.  Esophageal cancer: epidemiology, pathogenesis and prevention , 2008, Nature Clinical Practice Gastroenterology &Hepatology.

[112]  W. Chow,et al.  Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age. , 2008, Journal of the National Cancer Institute.

[113]  S. Spechler,et al.  Acid, bile, and CDX: the ABCs of making Barrett's metaplasia. , 2008, American journal of physiology. Gastrointestinal and liver physiology.

[114]  M. Capecchi,et al.  Bmi1 is expressed in vivo in intestinal stem cells , 2008, Nature Genetics.

[115]  N. Hayward,et al.  Genome-wide copy number analysis in esophageal adenocarcinoma using high-density single-nucleotide polymorphism arrays. , 2008, Cancer research.

[116]  J A Jankowski,et al.  Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett’s oesophagus , 2008, Gut.

[117]  Laura C. Greaves,et al.  Mechanisms of field cancerization in the human stomach: the expansion and spread of mutated gastric stem cells. , 2008, Gastroenterology.

[118]  F. Schmidt Meta-Analysis , 2008 .

[119]  H. Clevers,et al.  Identification of stem cells in small intestine and colon by marker gene Lgr5 , 2007, Nature.

[120]  B. Hogan,et al.  Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm , 2007, Development.

[121]  S. A. Wheeler,et al.  Characterization of Esophageal Submucosal Glands in Pig Tissue and Cultures , 2007, Digestive Diseases and Sciences.

[122]  Y. Niv Microsatellite instability and MLH1 promoter hypermethylation in colorectal cancer. , 2007, World journal of gastroenterology.

[123]  R. Goldbohm,et al.  Body mass index, height and risk of adenocarcinoma of the oesophagus and gastric cardia: a prospective cohort study , 2007, Gut.

[124]  S. Vollset,et al.  Two distinct aetiologies of cardia cancer; evidence from premorbid serological markers of gastric atrophy and Helicobacter pylori status , 2007, Gut.

[125]  J. Peters,et al.  Cdx-2 expression in squamous and metaplastic columnar epithelia of the esophagus. , 2006, Diseases of the esophagus : official journal of the International Society for Diseases of the Esophagus.

[126]  W. Sellers,et al.  Lineage dependency and lineage-survival oncogenes in human cancer , 2006, Nature Reviews Cancer.

[127]  I. van Seuningen,et al.  Metaplasia--a transdifferentiation process that facilitates cancer development: the model of gastric intestinal metaplasia. , 2006, Critical reviews in oncogenesis.

[128]  Carissa A. Sanchez,et al.  Neosquamous Epithelium Does Not Typically Arise from Barrett's Epithelium , 2006, Clinical Cancer Research.

[129]  Ji‐you Li,et al.  Expression of Cdx2 and Hepatocyte Antigen in Gastric Carcinoma: Correlation with Histologic Type and Implications for Prognosis , 2005, Clinical Cancer Research.

[130]  H. El‐Serag,et al.  Meta-Analysis: Obesity and the Risk for Gastroesophageal Reflux Disease and Its Complications , 2005, Annals of Internal Medicine.

[131]  W. Bodmer,et al.  CDX1 is an important molecular mediator of Barrett's metaplasia. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[132]  Masha Kocherginsky,et al.  Progression of Barrett's metaplasia to adenocarcinoma is associated with the suppression of the transcriptional programs of epidermal differentiation. , 2005, Cancer research.

[133]  R. Shivdasani,et al.  The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signaling. , 2005, Developmental cell.

[134]  J. Merchant,et al.  Chronic gastritis in the hypochlorhydric gastrin-deficient mouse progresses to adenocarcinoma , 2005, Oncogene.

[135]  C. la Vecchia,et al.  Trends in cancer mortality in the Americas, 1970-2000. , 2005, Annals of oncology : official journal of the European Society for Medical Oncology.

[136]  Janusz Jankowski,et al.  A critical review of the diagnosis and management of Barrett's esophagus: the AGA Chicago Workshop. , 2004, Gastroenterology.

[137]  C. Caldas,et al.  Model of the early development of diffuse gastric cancer in E‐cadherin mutation carriers and its implications for patient screening , 2004, The Journal of pathology.

[138]  Carissa A. Sanchez,et al.  Selectively Advantageous Mutations and Hitchhikers in Neoplasms , 2004, Cancer Research.

[139]  S. Watson,et al.  An Antiapoptotic Role for Gastrin and the Gastrin/CCK-2 Receptor in Barrett’s Esophagus , 2004, Cancer Research.

[140]  C. V. D. van de Velde,et al.  EBV-positive gastric adenocarcinomas: a distinct clinicopathologic entity with a low frequency of lymph node involvement. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[141]  D. Beer,et al.  Gene amplification in esophageal adenocarcinomas and Barrett's with high-grade dysplasia. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[142]  M. Barrett,et al.  Molecular phenotype of spontaneously arising 4N (G2-tetraploid) intermediates of neoplastic progression in Barrett's esophagus. , 2003, Cancer research.

[143]  Michael J Thun,et al.  Long‐term trends in cancer mortality in the United States, 1930–1998 , 2003, Cancer.

[144]  J. Goedert,et al.  Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. , 2003, Gastroenterology.

[145]  K. Sugano,et al.  Cdx1 induced intestinal metaplasia in the transgenic mouse stomach: comparative study with Cdx2 transgenic mice , 2003, Gut.

[146]  D. Thompson,et al.  Gastrin induces proliferation in Barrett's metaplasia through activation of the CCK2 receptor. , 2003, Gastroenterology.

[147]  H. Seno,et al.  CDX2 expression in the stomach with intestinal metaplasia and intestinal-type cancer: Prognostic implications. , 2002, International journal of oncology.

[148]  E. El-Omar,et al.  Interleukin 1beta polymorphisms increase risk of hypochlorhydria and atrophic gastritis and reduce risk of duodenal ulcer recurrence in Japan. , 2002, Gastroenterology.

[149]  K. Sugano,et al.  Conversion of gastric mucosa to intestinal metaplasia in Cdx2-expressing transgenic mice. , 2002, Biochemical and biophysical research communications.

[150]  F. Bosman,et al.  p16 inactivation by methylation of the CDKN2A promoter occurs early during neoplastic progression in Barrett's esophagus. , 2002, Gastroenterology.

[151]  K. Kaestner,et al.  Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. , 2002, Gastroenterology.

[152]  F. Schmitz,et al.  Cellular expression of CCK-A and CCK-B/gastrin receptors in human gastric mucosa , 2001, Regulatory Peptides.

[153]  P. Blount,et al.  Predictors of progression in Barrett's esophagus II: baseline 17p (p53) loss of heterozygosity identifies a patient subset at increased risk for neoplastic progression. , 2001 .

[154]  T. Demeester,et al.  Distribution and Significance of Epithelial Types in Columnar-Lined Esophagus , 2001, The American journal of surgical pathology.

[155]  A. Helicobacter,et al.  Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts , 2001, Gut.

[156]  C. Hassan,et al.  Gastric cardia inflammation: role of helicobacter pylori infection and symptoms of gastroesophageal reflux disease , 2001, American Journal of Gastroenterology.

[157]  C. Caldas,et al.  Early gastric cancer in young, asymptomatic carriers of germ-line E-cadherin mutations. , 2001, The New England journal of medicine.

[158]  D. Graham,et al.  Topographic patterns of intestinal metaplasia and gastric cancer , 2000, American Journal of Gastroenterology.

[159]  P. Chandrasoma,et al.  Histology of the gastroesophageal junction: an autopsy study. , 2000, The American journal of surgical pathology.

[160]  R. Logan,et al.  An Inverse Relation Between cagA‐Positive Strains of Helicobacter pylori Infection and Risk of Esophageal and Gastric Cardia Adenocarcinoma , 1999, Helicobacter.

[161]  S. Baylin,et al.  Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. , 1999, Cancer research.

[162]  M. Toyota,et al.  Distinct methylation pattern and microsatellite instability in sporadic gastric cancer , 1999, International journal of cancer.

[163]  E. Kuipers,et al.  Endoscopic regression of Barrett’s oesophagus during omeprazole treatment; a randomised double blind study , 1999, Gut.

[164]  K. Cheng,et al.  Classification of adenocarcinoma of the oesophagogastric junction , 1999, The British journal of surgery.

[165]  M. Blaser,et al.  Hypothesis: the changing relationships of Helicobacter pylori and humans: implications for health and disease. , 1999, The Journal of infectious diseases.

[166]  J. Lagergren,et al.  Association between Body Mass and Adenocarcinoma of the Esophagus and Gastric Cardia , 1999, Annals of Internal Medicine.

[167]  J. Fraumeni,et al.  The rising incidence of gastric cardia cancer. , 1999, Journal of the National Cancer Institute.

[168]  Christopher P. Crum,et al.  p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development , 1999, Nature.

[169]  R. Hunt,et al.  Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. , 1998, Gastroenterology.

[170]  J. Goldblum,et al.  Inflammation and intestinal metaplasia of the gastric cardia: the role of gastroesophageal reflux and H. pylori infection. , 1998, Gastroenterology.

[171]  Anthony E. Reeve,et al.  E-cadherin germline mutations in familial gastric cancer , 1998, Nature.

[172]  A B West,et al.  An inverse relation between cagA+ strains of Helicobacter pylori infection and risk of esophageal and gastric cardia adenocarcinoma. , 1998, Cancer research.

[173]  P. Malfertheiner,et al.  Prevalence and pattern of Helicobacter pylori gastritis in the gastric cardia. , 1997, The American journal of gastroenterology.

[174]  E. Furth,et al.  CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium. , 1997, Gastroenterology.

[175]  A. Bhattacharyya,et al.  Intestinal metaplasia of the gastric cardia. , 1997, The American journal of gastroenterology.

[176]  G. Lapertosa,et al.  Partial regression of Barrett's esophagus by long-term therapy with high-dose omeprazole. , 1996, Gastrointestinal endoscopy.

[177]  R. M. Huberman,et al.  The gastric cardia in Helicobacter pylori infection. , 1994, Human pathology.

[178]  P. Chambon,et al.  The ulceration‐associated cell lineage (UACL) reiterates the Brunner's gland differentiation programme but acquires the proliferative organization of the gastric gland , 1994, The Journal of pathology.

[179]  N. Shepherd,et al.  Regression of columnar lined (Barrett's) oesophagus with continuous omeprazole therapy , 1993, Alimentary pharmacology & therapeutics.

[180]  C. P. Leblond,et al.  Dynamics of epithelial cells in the corpus of the mouse stomach. I. Identification of proliferative cell types and pinpointing of the stem cell , 1993, The Anatomical record.

[181]  T. McDaniel,et al.  Altered messenger RNA and unique mutational profiles of p53 and Rb in human esophageal carcinomas. , 1993, Cancer research.

[182]  G. Friedman,et al.  Helicobacter pylori infection and the risk of gastric carcinoma. , 1991, The New England journal of medicine.

[183]  J. Fraumeni,et al.  Rising incidence of adenocarcinoma of the esophagus and gastric cardia. , 1991, JAMA.

[184]  F. Borchard,et al.  Cancer of the Distal Esophagus and Cardia: Incidence, Tumorous Infiltration, and Metastatic Spread , 1986, Annals of surgery.

[185]  E. Lee Dynamic histology of the antral epithelium in the mouse stomach: III. Ultrastructure and renewal of pit cells. , 1985, The American journal of anatomy.

[186]  B. Marshall,et al.  UNIDENTIFIED CURVED BACILLI IN THE STOMACH OF PATIENTS WITH GASTRITIS AND PEPTIC ULCERATION , 1984, The Lancet.

[187]  M. Orringer,et al.  Clinical, epidemiologic, and morphologic comparison between adenocarcinomas arising in Barrett's esophageal mucosa and in the gastric cardia. , 1984, Gastroenterology.

[188]  R. Goyal,et al.  The histologic spectrum of Barrett's esophagus. , 1976, The New England journal of medicine.

[189]  A. Lilienfeld,et al.  MODEL FOR GASTRIC CANCER EPIDEMIOLOGY , 1976, The Lancet.

[190]  P. Laurén,et al.  THE TWO HISTOLOGICAL MAIN TYPES OF GASTRIC CARCINOMA: DIFFUSE AND SO-CALLED INTESTINAL-TYPE CARCINOMA. AN ATTEMPT AT A HISTO-CLINICAL CLASSIFICATION. , 1965, Acta pathologica et microbiologica Scandinavica.

[191]  N. Barrett Chronic peptic ulcerz of the œophagus and ‘œsophagitis’ , 1950 .

[192]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .

[193]  D. Greenwood,et al.  Meta-analysis of Observational Studies , 2012 .

[194]  F. Bosman,et al.  WHO Classification of Tumours of the Digestive System , 2010 .

[195]  V. Preedy,et al.  Prospective Cohort Study , 2010 .

[196]  R. Jensen,et al.  Patients with multiple endocrine neoplasia type 1 with gastrinomas have an increased risk of severe esophageal disease including stricture and the premalignant condition, Barrett's esophagus. , 2006, The Journal of clinical endocrinology and metabolism.

[197]  K. Sugano,et al.  Cdx 1 induced intestinal metaplasia in the transgenic mouse stomach : comparative study with Cdx 2 transgenic mice , 2004 .

[198]  J. Steffen The role of interleukin-1 polymorphism in the pathogenesis of gastric cancer , 2000 .

[199]  J R Siewert,et al.  Esophageal Carcinoma , 2000, Recent Results in Cancer Research.

[200]  H. Höfler,et al.  Identification of eleven novel tumor‐associated e‐cadherin mutations , 1999, Human mutation.

[201]  S. Vollset,et al.  Helicobacter pylori infection and risk of cardia cancer and non-cardia gastric cancer. A nested case-control study. , 1999, Scandinavian journal of gastroenterology.

[202]  C. P. Leblond,et al.  Dynamic histology of the antral epithelium in the mouse stomach: II. Ultrastructure and renewal of isthmal cells. , 1985, The American journal of anatomy.

[203]  Ali Ms Letter: Geriatrics is medicine. , 1974, Lancet.

[204]  N R BARRETT,et al.  Chronic peptic ulcer of the oesophagus and 'oesophagitis'. , 1950, The British journal of surgery.

[205]  E. J. Stringer,et al.  Cdx 2 determines the fate of postnatal intestinal endoderm , 2022 .

[206]  O. Franco,et al.  Mendelian Randomization Causal Analysis LDL cholesterol still a problem in old age? A Mendelian randomization study , 2015 .