Hybrid evolutionary multiobjective fuzzy c-medoids clustering of categorical data

In this article, we have considered the problem of fuzzy clustering of categorical data. In this regard, the well-known fuzzy C-medoids algorithm for categorical data clustering is posed as a multiobjective optimization problem where the cluster medoids are encoded in the chromosomes of a multiobjective genetic algorithm. The chromosomes are of variable lengths to permit automatic evolution of the number of clusters. The chromosomes are updated through the medoid updating process of fuzzy C-medoids clustering. The fuzzy cluster variance and cluster separation are taken as the two objectives to be optimized simultaneously. The performance of the proposed algorithm has been compared with that of different well-known categorical data clustering algorithms and demonstrated for a variety of synthetic and real-life categorical data sets.

[1]  Ujjwal Maulik,et al.  A multiobjective approach to MR brain image segmentation , 2011, Appl. Soft Comput..

[2]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[3]  Ujjwal Maulik,et al.  Unsupervised Pixel Classification in Satellite Imagery Using Multiobjective Fuzzy Clustering Combined With SVM Classifier , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[5]  Ujjwal Maulik,et al.  Multiobjective Genetic Algorithms for Clustering - Applications in Data Mining and Bioinformatics , 2011 .

[6]  Carlos A. Coello Coello,et al.  Evolutionary multiobjective optimization , 2011, WIREs Data Mining Knowl. Discov..

[7]  Michael K. Ng,et al.  A fuzzy k-modes algorithm for clustering categorical data , 1999, IEEE Trans. Fuzzy Syst..

[8]  Ujjwal Maulik,et al.  A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA , 2008, IEEE Transactions on Evolutionary Computation.

[9]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[10]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[11]  Joshua D. Knowles,et al.  Multiobjective clustering around medoids , 2005, 2005 IEEE Congress on Evolutionary Computation.

[12]  Michael K. Ng,et al.  A highly-usable projected clustering algorithm for gene expression profiles , 2003, BIOKDD.

[13]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[14]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[15]  Ujjwal Maulik,et al.  Multiobjective Genetic Algorithm-Based Fuzzy Clustering of Categorical Attributes , 2009, IEEE Transactions on Evolutionary Computation.

[16]  Douglas H. Norrie,et al.  Agent-Based Systems for Intelligent Manufacturing: A State-of-the-Art Survey , 1999, Knowledge and Information Systems.

[17]  Carlos A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[18]  R. Krishnapuram,et al.  A fuzzy relative of the k-medoids algorithm with application to web document and snippet clustering , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[19]  Joshua D. Knowles,et al.  An Evolutionary Approach to Multiobjective Clustering , 2007, IEEE Transactions on Evolutionary Computation.

[20]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[21]  Ujjwal Maulik,et al.  Unsupervised Satellite Image Segmentation by Combining SA Based Fuzzy Clustering with Support Vector Machine , 2009, 2009 Seventh International Conference on Advances in Pattern Recognition.

[22]  Ujjwal Maulik,et al.  Multiobjective approach to categorical data clustering , 2007, 2007 IEEE Congress on Evolutionary Computation.

[23]  Ujjwal Maulik,et al.  Towards improving fuzzy clustering using support vector machine: Application to gene expression data , 2009, Pattern Recognit..

[24]  Ujjwal Maulik,et al.  Multiobjective Genetic Clustering with Ensemble Among Pareto Front Solutions: Application to MRI Brain Image Segmentation , 2009, 2009 Seventh International Conference on Advances in Pattern Recognition.

[25]  Ujjwal Maulik,et al.  Simulated annealing based automatic fuzzy clustering combined with ANN classification for analyzing microarray data , 2010, Comput. Oper. Res..

[26]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[27]  Ujjwal Maulik,et al.  Multiobjective Genetic Clustering for Pixel Classification in Remote Sensing Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Ujjwal Maulik,et al.  Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification , 2003, IEEE Trans. Geosci. Remote. Sens..

[29]  Ujjwal Maulik,et al.  Genetic algorithm-based clustering technique , 2000, Pattern Recognit..