Experimental design for groundwater modeling and management

[1] This study aims to develop a methodology for data collection that accounts for the application of simulation models in decision making for groundwater management. Simulation model reliability is estimated by comparing the effects that a perturbation in the model parameter space has over the model output as well as over the solution of a multiobjective optimization problem. The problem of experimental design for parameter estimation is formulated and solved using a combination of genetic algorithm and gradient-based optimization. Gaussian quadrature and Bayesian decision theory are combined for selecting the best design under parameter uncertainty. The proposed methodology is useful for selecting a robust design that will outperform all other candidate designs under most potential “true” states of the system. Results also show that the uncertainty analysis is able to identify complex interactions among the model parameters that may affect the performance of the experimental designs as well as the attainability of management objectives.

[1]  G. Pinder,et al.  Optimal data acquisition strategy for the development of a transport model for groundwater remediation , 1991 .

[2]  Wilson H. Tang,et al.  Optimal ground-water detection monitoring system design under uncertainty , 1999 .

[3]  Cass T. Miller,et al.  Optimal design for problems involving flow and transport phenomena in saturated subsurface systems , 2002 .

[4]  Samir El Magnouni,et al.  A multicriterion approach to groundwater management , 1994 .

[5]  William W.-G. Yeh,et al.  Multiobjective optimization for sustainable groundwater management in semiarid regions , 2004 .

[6]  Nien-Sheng Hsu,et al.  Multiobjective Water Resources Management Planning , 1984 .

[7]  W. Yeh,et al.  Uncertainty Analysis in Contaminated Aquifer Management , 2002 .

[8]  Manoutchehr Heidari,et al.  Applications of Optimal Hydraulic Control to Ground-Water Systems , 1994 .

[9]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[10]  D. McKinney,et al.  Network design for predicting groundwater contamination , 1992 .

[11]  William W.-G. Yeh,et al.  Optimal pumping test design for parameter estimation and prediction in groundwater hydrology , 1990 .

[12]  Thomas C. Harmon,et al.  Experimental design and model parameter estimation for locating a dissolving dense nonaqueous phase liquid pool in groundwater , 2002 .

[13]  William W.-G. Yeh,et al.  Systems Analysis in Ground-Water Planning and Management , 1992 .

[14]  Sang Uk Lee,et al.  Modified Hausdorff distance for model-based 3-D object recognition from a single view , 2004, J. Vis. Commun. Image Represent..

[15]  Arlen W. Harbaugh,et al.  MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process , 2000 .

[16]  Brian J. Wagner,et al.  Sampling Design Methods For Groundwater Modeling Under Uncertainty , 1995 .

[17]  Hans Bock,et al.  Numerical methods for optimum experimental design in DAE systems , 2000 .

[18]  Frank T.-C. Tsai,et al.  Global‐local optimization for parameter structure identification in three‐dimensional groundwater modeling , 2003 .

[19]  W. Yeh,et al.  Optimal observation network design for parameter structure identification in groundwater modeling , 2005 .

[20]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[21]  W. G. Hunter,et al.  Experimental Design: Review and Comment , 1984 .

[22]  James Stephen Marron,et al.  Visual Error Criteria for Qualitative Smoothing , 1995 .

[23]  Touradj Ebrahimi,et al.  MESH: measuring errors between surfaces using the Hausdorff distance , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[24]  Kalmanje Krishnakumar,et al.  Micro-Genetic Algorithms For Stationary And Non-Stationary Function Optimization , 1990, Other Conferences.

[25]  William W.-G. Yeh,et al.  Sampling Network Design for Transport Parameter Identification , 1990 .

[26]  William W.-G. Yeh,et al.  A proposed stepwise regression method for model structure identification , 1998 .

[27]  W. Yeh,et al.  Identification of parameters in unsteady open channel flows , 1972 .

[28]  Clifford I. Voss,et al.  Multiobjective sampling design for parameter estimation and model discrimination in groundwater solute transport , 1989 .

[29]  Roel Snieder,et al.  The Anatomy of Inverse Problems , 2000 .

[30]  Nien-Sheng Hsu,et al.  Optimum experimental design for parameter identification in groundwater hydrology , 1989 .

[31]  E. Reichard Groundwater–Surface Water Management With Stochastic Surface Water Supplies: A Simulation Optimization Approach , 1995 .

[32]  A. C. Miller,et al.  Discrete Approximations of Probability Distributions , 1983 .

[33]  Frank T.-C. Tsai,et al.  Characterization and identification of aquifer heterogeneity with generalized parameterization and Bayesian estimation , 2004 .

[34]  William W.-G. Yeh,et al.  Optimal Configuration and Scheduling of Ground-Water Tracer Test , 1991 .

[35]  Helmut Alt,et al.  Comparison of Distance Measures for Planar Curves , 2003, Algorithmica.

[36]  W. Yeh,et al.  An Extended Identifiability in Aquifer Parameter Identification and Optimal Pumping Test Design , 1984 .

[37]  William W.-G. Yeh,et al.  Coupled inverse problems in groundwater modeling - 1. Sensitivity analysis and parameter identification. , 1990 .

[38]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Lucien Duckstein,et al.  MULTICRITERION ANALYSIS OF GROUNDWATER CONTAMINATION MANAGEMENT , 1992 .

[40]  Tracy Nishikawa,et al.  Optimal pumping test design for the parameter identification of groundwater systems , 1989 .