TAL et Santé [NLP and Health]

RÉSUMÉ. À l’heure où l’informatique connaît des changements rapides et où le domaine médical voit émerger de nouvelles opportunités (médecine personnalisée, recherche pharmaceutique) et de nouveaux défis (pandémies, maladies chroniques, vieillissement de la population)

[1]  Luis E Anido-Rifón,et al.  Smart conversational agents for the detection of neuropsychiatric disorders: A systematic review , 2020, J. Biomed. Informatics.

[2]  Anna Korhonen,et al.  A systematic literature review of automatic Alzheimer’s disease detection from speech and language , 2020, J. Am. Medical Informatics Assoc..

[3]  Sophie Rosset,et al.  The Impact of Specialized Corpora for Word Embeddings in Natural Langage Understanding , 2020, MIE.

[4]  Maxime Amblard,et al.  Investigation par méthodes d’apprentissage des spécificités langagières propres aux personnes avec schizophrénie (Investigating Learning Methods Applied to Language Specificity of Persons with Schizophrenia) , 2020, JEPTALNRECITAL.

[5]  B. Lecouteux,et al.  FlauBERT: Unsupervised Language Model Pre-training for French , 2019, LREC.

[6]  Pedro Ortiz Suarez,et al.  CamemBERT: a Tasty French Language Model , 2019, ACL.

[7]  H. Sharifzadeh,et al.  A Comprehensive Review of Computational Methods for Automatic Prediction of Schizophrenia With Insight Into Indigenous Populations , 2019, Front. Psychiatry.

[8]  Cristiano André da Costa,et al.  Survey of conversational agents in health , 2019, Expert Syst. Appl..

[9]  Satrajit S. Ghosh,et al.  Automated assessment of psychiatric disorders using speech: A systematic review , 2019, Laryngoscope investigative otolaryngology.

[10]  Pierre Zweigenbaum,et al.  Designing a virtual patient dialogue system based on terminology-rich resources: Challenges and evaluation , 2019, Natural Language Engineering.

[11]  Visar Berisha,et al.  A Review of Automated Speech and Language Features for Assessment of Cognitive and Thought Disorders , 2019, IEEE Journal of Selected Topics in Signal Processing.

[12]  Xavier Tannier,et al.  Terminologies augmented recurrent neural network model for clinical named entity recognition , 2019, J. Biomed. Informatics.

[13]  N. Grabar,et al.  CAS: French Corpus with Clinical Cases , 2018, Louhi@EMNLP.

[14]  Maria Liakata,et al.  Using clinical Natural Language Processing for health outcomes research: Overview and actionable suggestions for future advances , 2018, J. Biomed. Informatics.

[15]  Nicholas Cummins,et al.  Speech analysis for health: Current state-of-the-art and the increasing impact of deep learning. , 2018, Methods.

[16]  Özlem Uzuner,et al.  Advancing the State of the Art in Clinical Natural Language Processing through Shared Tasks , 2018, Yearbook of Medical Informatics.

[17]  Natalia Grabar,et al.  Detection and Analysis of Drug Misuses. A Study Based on Social Media Messages , 2018, Front. Pharmacol..

[18]  Thierry Hamon,et al.  A French clinical corpus with comprehensive semantic annotations: development of the Medical Entity and Relation LIMSI annOtated Text corpus (MERLOT) , 2018, Lang. Resour. Evaluation.

[19]  Karin M. Verspoor,et al.  Parallel Corpora for the Biomedical Domain , 2018, LREC.

[20]  Pierre Zweigenbaum,et al.  Clinical Natural Language Processing in languages other than English: opportunities and challenges , 2018, Journal of Biomedical Semantics.

[21]  G Savova,et al.  Capturing the Patient’s Perspective: a Review of Advances in Natural Language Processing of Health-Related Text , 2017, Yearbook of Medical Informatics.

[22]  C. Lavergne,et al.  What Patients Can Tell Us: Topic Analysis for Social Media on Breast Cancer , 2017, JMIR medical informatics.

[23]  Anita Burgun-Parenthoine,et al.  Improving a full-text search engine: the importance of negation detection and family history context to identify cases in a biomedical data warehouse , 2017, J. Am. Medical Informatics Assoc..

[24]  Olivier Ferret,et al.  Temporal information extraction from clinical text , 2017, EACL.

[25]  Guilherme Del Fiol,et al.  Context-sensitive decision support (infobuttons) in electronic health records: a systematic review , 2017, J. Am. Medical Informatics Assoc..

[26]  Pierre Zweigenbaum,et al.  A Dataset for ICD-10 Coding of Death Certificates: Creation and Usage , 2016, BioTxtM@COLING 2016.

[27]  D Demner-Fushman,et al.  Aspiring to Unintended Consequences of Natural Language Processing: A Review of Recent Developments in Clinical and Consumer-Generated Text Processing , 2016, Yearbook of Medical Informatics.

[28]  Peter Szolovits,et al.  MIMIC-III, a freely accessible critical care database , 2016, Scientific Data.

[29]  Thomas F. Quatieri,et al.  A review of depression and suicide risk assessment using speech analysis , 2015, Speech Commun..

[30]  Stéfan Jacques Darmoni,et al.  Language Resources for French in the Biomedical Domain , 2014, LREC.

[31]  W. Chapman,et al.  What can natural language processing do for clinical decision support? , 2009, J. Biomed. Informatics.

[32]  D. Lindberg,et al.  Unified Medical Language System , 2020, Definitions.

[33]  Fabio Tamburini,et al.  Linguistic features and automatic classifiers for identifying mild cognitive impairment and dementia , 2021, Comput. Speech Lang..

[34]  Patrick Ruch,et al.  Contextualized French Language Models for Biomedical Named Entity Recognition , 2020, JEPTALNRECITAL.

[35]  Pierre Zweigenbaum,et al.  The Quaero French Medical Corpus : A Ressource for Medical Entity Recognition and Normalization , 2014 .