Modeling the Process-Induced Modifications of the Microstructure of Work Piece Surface Zones in Cutting Processes

Cutting processes lead to mechanical and thermal loading of tool and work piece. This loading entails a direct influence of the cutting process on the surface layers of the manufactured work pieces. As a result, residual stresses and modifications of the micro-structure like white layers can occur in surface-near zones of the work piece. This paper presents the development of a FE-simulation model to predict phase transformations due to cutting processes. Therefore a 2D-FE-cutting simulation including a dynamic re-meshing is combined with a simulation routine to describe phase transformations that was primarily developed to simulate laser hardening. This paper illustrates the implemented mechanisms to determine phase transformations considering short time austenization and shows first experimental results revealing the influence of process parameters on the surfaces microstructure.

[1]  V. Schulze,et al.  Prediction of phase transformations during laser surface hardening of AISI 4140 including the effects of inhomogeneous austenite formation , 2006 .

[2]  Ulrich Renz,et al.  Thermische Analyse des Zerspanens metallischer Werkstoffe bei hohen Schnittgeschwindigkeiten , 2004 .

[3]  Jörg Soehner Beitrag zur Simulation zerspanungstechnologischer Vorgänge mit Hilfe der Finite-Element-Methode [online] , 2003 .

[4]  A. Khachaturyan,et al.  Nature of axial ratio anomalies of the martensite lattice and mechanism of diffusionless γ→α transformation , 1975 .

[5]  Tatjana Miokovic,et al.  Analyse des Umwandlungsverhaltens bei ein- und mehrfacher Kurzzeithärtung bzw. Laserstrahlhärtung des Stahls 42CrMo4 , 2005 .

[6]  Christopher J. Evans,et al.  White Layers and Thermal Modeling of Hard Turned Surfaces , 1997, Manufacturing Science and Engineering: Volume 2.

[7]  Gerry Byrne,et al.  TEM study on the surface white layer in two turned hardened steels , 2002 .

[8]  V. Schulze,et al.  Influence of cyclic temperature changes on the microstructure of AISI 4140 after laser surface hardening , 2007 .

[9]  Yusuf Altintas,et al.  Prediction of tool and chip temperature in continuous and interrupted machining , 2002 .

[10]  Jing Shi,et al.  On predicting chip morphology and phase transformation in hard machining , 2006 .

[11]  Siamak Serajzadeh,et al.  Modelling the temperature distribution and microstructural changes during hot rod rolling of a low carbon steel , 2002 .

[12]  Tarek Mabrouki,et al.  A contribution to a qualitative understanding of thermo-mechanical effects during chip formation in hard turning , 2006 .

[13]  Volker Schulze,et al.  Investigation of surface near residual stress states after micro-cutting by finite element simulation , 2010 .

[14]  I. S. Jawahir,et al.  MODELING OF WHITE AND DARK LAYER FORMATION IN HARD MACHINING OF AISI 52100 BEARING STEEL , 2010 .

[15]  Pedro J. Arrazola,et al.  A new approach for the friction identification during machining through the use of finite element modeling , 2008 .

[16]  Fabrizio Micari,et al.  A critical analysis on the friction modelling in orthogonal machining , 2007 .

[17]  Shreyes N. Melkote,et al.  Modeling of white layer formation under thermally dominant conditions in orthogonal machining of hardened AISI 52100 steel , 2008 .

[18]  S. Chandrasekar,et al.  Modeling of Quenching and Tempering Induced Phase Transformations in Steels , 2009 .

[19]  Sung-Su Kang,et al.  A study on the mechanical properties for developing a computer simulation model for heat treatment process , 2007 .