Inapproximability for Metric Embeddings into R^d

We consider the problem of computing the smallest possible distortion for embedding of a given n-point metric space into R.d, where d is fixed (and small). For d = 1, it was known that approximating the minimum distortion with a factor better than roughly n1/12 is NP-hard. From this result we derive inapproximability with factor roughly n1/(22d-10) for every fixed d ges 2, by a conceptually very simple reduction. However, the proof of correctness involves a nontrivial result in geometric topology (whose current proof is based on ideas due to Jussi Vaisala). For d ges 3,we obtain a stronger inapproximability result by a different reduction: assuming PneNP, no polynomial- time algorithm can distinguish between spaces embeddable in R.d with constant distortion from spaces requiring distortion at least nc/d, for a constant c > 0. The exponent c/d has the correct order of magnitude, since every n-point metric space can be embedded in Rd with distortion O(n2/d log3/2 n) and such an embedding can be constructed in polynomial time by random projection. For d = 2, we give an example of a metric space that requires a large distortion for embedding in R2, while all not too large subspaces of it embed almost isometrically.

[1]  Mihai Badoiu,et al.  Approximation algorithms for low-distortion embeddings into low-dimensional spaces , 2005, SODA '05.

[2]  Moses Charikar,et al.  Local Global Tradeoffs in Metric Embeddings , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[3]  Piotr Indyk,et al.  Embedding ultrametrics into low-dimensional spaces , 2006, SCG '06.

[4]  Madhu Sudan,et al.  A Geometric Approach to Betweenness , 1995, ESA.

[5]  Yuval Peres,et al.  Trees and Markov Convexity , 2006, SODA '06.

[6]  Piotr Indyk,et al.  Low-distortion embeddings of general metrics into the line , 2005, STOC '05.

[7]  Piotr Indyk,et al.  Approximation algorithms for embedding general metrics into trees , 2007, SODA '07.

[8]  Piotr Indyk,et al.  Algorithmic applications of low-distortion geometric embeddings , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[9]  Karl Menger,et al.  New Foundation of Euclidean Geometry , 1931 .

[10]  Jirí Matousek,et al.  Low-Distortion Embeddings of Trees , 2001, J. Graph Algorithms Appl..

[11]  Alexander Hall,et al.  Approximating the Distortion , 2005, APPROX-RANDOM.

[12]  Sanjeev Arora,et al.  Local versus global properties of metric spaces , 2006, SODA 2006.

[13]  J. Matousek,et al.  Bi-Lipschitz embeddings into low-dimensional Euclidean spaces , 1990 .

[14]  A. Sinclair,et al.  Low Distortion Maps Between Point Sets , 2009 .

[15]  M. D. Kirszbraun Über die zusammenziehende und Lipschitzsche Transformationen , 1934 .

[16]  Christos H. Papadimitriou,et al.  The complexity of low-distortion embeddings between point sets , 2005, SODA '05.

[17]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[18]  Anupam Gupta Embedding Tree Metrics into Low-Dimensional Euclidean Spaces , 2000, Discret. Comput. Geom..

[19]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[20]  Krzysztof Onak,et al.  Circular partitions with applications to visualization and embeddings , 2008, SCG '08.

[21]  Erik D. Demaine,et al.  Plane Embeddings of Planar Graph Metrics , 2007, Discret. Comput. Geom..

[22]  Madhu Sudan,et al.  A Geometric Approach to Betweenness , 1995, ESA.

[23]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[24]  Erik D. Demaine,et al.  Plane Embeddings of Planar Graph Metrics , 2006, SCG '06.

[25]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[26]  Jaroslav Opatrny,et al.  Total Ordering Problem , 1979, SIAM J. Comput..

[27]  Santosh S. Vempala,et al.  Local versus global properties of metric spaces , 2006, SODA '06.