Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter‐scale slopes of candidate Phoenix landing sites

[1] The objectives of this paper are twofold: first, to report our estimates of the meter-to-decameter-scale topography and slopes of candidate landing sites for the Phoenix mission, based on analysis of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images with a typical pixel scale of 3 m and Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) images at 0.3 m pixel−1 and, second, to document in detail the geometric calibration, software, and procedures on which the photogrammetric analysis of HiRISE data is based. A combination of optical design modeling, laboratory observations, star images, and Mars images form the basis for software in the U.S. Geological Survey Integrated Software for Imagers and Spectrometers (ISIS) 3 system that corrects the images for a variety of distortions with single-pixel or subpixel accuracy. Corrected images are analyzed in the commercial photogrammetric software SOCET SET (® BAE Systems), yielding digital topographic models (DTMs) with a grid spacing of 1 m (3–4 pixels) that require minimal interactive editing. Photoclinometry yields DTMs with single-pixel grid spacing. Slopes from MOC and HiRISE are comparable throughout the latitude zone of interest and compare favorably with those where past missions have landed successfully; only the Mars Exploration Rover (MER) B site in Meridiani Planum is smoother. MOC results at multiple locations have root-mean-square (RMS) bidirectional slopes of 0.8–4.5° at baselines of 3–10 m. HiRISE stereopairs (one per final candidate site and one in the former site) yield 1.8–2.8° slopes at 1-m baseline. Slopes at 1 m from photoclinometry are also in the range 2–3° after correction for image blur. Slopes exceeding the 16° Phoenix safety limit are extremely rare.

[1]  D. Wells,et al.  Fits: a flexible image transport system , 1981 .

[2]  P R Wolf,et al.  Elements of Photogrammetry , 1983 .

[3]  Paul Wintz,et al.  Digital image processing (2nd ed.) , 1987 .

[4]  M. A. Collins,et al.  Mission to Mars , 2004 .

[5]  R. L. Kirk Separation of topographic and intrinsic backscatter variations in biscopic radar images: A magic airbrush , 1993 .

[6]  R. M. Batson,et al.  Digital maps of Mars , 1995 .

[7]  Kenneth L. Tanaka Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars , 1997 .

[8]  Scott Miller,et al.  Adaptive automatic terrain extraction , 1997, Defense, Security, and Sensing.

[9]  E. Eliason Production of Digital Image Models Using the ISIS System , 1997 .

[10]  Karl J. Becker,et al.  ISIS - A Software Architecture for Processing Planetary Images , 1997 .

[11]  Charles Acton,et al.  Spice Products Available to The Planetary Science Community , 1999 .

[12]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[13]  B. Schlesinger,et al.  Definition of the Flexible Image Transport System (FITS) , 2001 .

[14]  M. Richardson,et al.  An assessment of the global, seasonal, and interannual spacecraft record of Martian climate in the thermal infrared , 2002 .

[15]  S. W. Lee,et al.  Mars Reconnaissance Orbiter design approach for high-resolution surface imaging , 2003 .

[16]  R. Kirk,et al.  High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images , 2003 .

[17]  J. Anderson,et al.  Modernization of the Integrated Software for Imagers and Spectrometers , 2004 .

[18]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[19]  High-Resolution Topomapping of Mars: Life After MER Site Selection , 2004 .

[20]  P.H. Smith The Phoenix mission to Mars , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[21]  George Vosselman,et al.  Basic computer vision techniques , 2004 .

[22]  The Engineering Behind Mars Exploration Program 2007 Phoenix Mission Landing Site Selection , 2006 .

[23]  R. Kirk,et al.  Joint analysis of visible and infrared images , 2005 .

[24]  REGISTERING HRSC IMAGERY OF THE MARS EXPRESS MISSION TO MARS OBSERVER LASER ALTIMETER DATA , 2005 .

[25]  R. Kirk,et al.  Joint Analysis of Visible and Infrared Images: A "Magic Airbrush" for Qualitative and Quantitative Topography , 2005 .

[26]  Topography of Candidate Phoenix Landing Sites from MOC Images , 2006 .

[27]  Matthew P. Golombek,et al.  Boulder Hazard Assessment of Potential Phoenix Landing Sites , 2006 .

[28]  R. Kirk,et al.  Topomapping of Mars with HRSC Images, ISIS, and a commercial stereo workstation , 2006 .

[29]  William H. Farrand,et al.  Overview of the Opportunity Mars Exploration Rover mission to Meridiani Planum: Eagle crater to Purgatory ripple , 2006 .

[30]  Simultaneous Determination of Dry-Layer Thickness and Sub-Surface Ice Content in the Polar Regions of Mars: Implications for the Phoenix Landing Site Selection , 2006 .

[31]  Geomorphology Context and THEMIS Appearance of Boulder Fields in Phoenix Landing Region B , 2006 .

[32]  L. M. Barge,et al.  Landing Site Map Compilation and Hazard Assessment for Phoenix , 2006 .

[33]  Randolph L. Kirk,et al.  Overview of Mars Exploration Program 2007 Phoenix Mission Landing Site Selection , 2006 .

[34]  Bingcai Zhang,et al.  AUTOMATIC TERRAIN EXTRACTION USING MULTIPLE IMAGE PAIR AND BACK MATCHING , 2006 .

[35]  S. Squyres,et al.  Aeolian Geomorphology with MER Opportunity at Meridiani Planum, Mars , 2007 .

[36]  Andrew E. Johnson,et al.  Opportunity rover localization and topographic mapping at the landing site of Meridiani Planum, Mars , 2007 .

[37]  Phoenix Landing Site Selection Update , 2007 .

[38]  J. Muller,et al.  Evaluating planetary digital terrain models - the HRSC DTM test , 2007 .

[39]  David A. Paige,et al.  Mars Climate Sounder: An investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions , 2007 .

[40]  J. A. Grant,et al.  Downselection of Landing Sites for the Mars Science Laboratory , 2008 .

[41]  R. Morris,et al.  Geomorphologic and mineralogic characterization of the northern plains of Mars at the Phoenix Mission candidate landing sites , 2008 .

[42]  M. Mellon,et al.  A prelanding assessment of the ice table depth and ground ice characteristics in Martian permafrost at the Phoenix landing site , 2008 .

[43]  Carol R. Stoker,et al.  Introduction to special section on the Phoenix Mission: Landing Site Characterization Experiments, Mission Overviews, and Expected Science , 2008 .

[44]  Paul S. Smith,et al.  Mars Exploration Program 2007 Phoenix landing site selection and characteristics , 2008 .

[45]  Raymond E. Arvidson,et al.  Size-frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces , 2008 .