A Uniform Tableaux Method for Nonmonotonic Modal Logics

We present a semantic tableaux calculus for propositional nonmonotonic modal logics, based on possible-worlds characterisations for nonmonotonic modal logics. This method is parametric with respect to both the modal logic and the preference semantics, since it handles in a uniform way the entailment problem for a wide class of nonmonotonic modal logics: McDermott and Doyle's logics and ground logics. It also achieves the computational complexity lower bounds.

[1]  Grigori F. Shvarts Autoepistemic Modal Logics , 1990, TARK.

[2]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[3]  Victor W. Marek,et al.  Nonmonotonic logic - context-dependent reasoning , 1997, Artificial intelligence.

[4]  Dov M. Gabbay,et al.  A Proof Theoretical Approach to Default Reasoning I: Tableaux for Default Logic , 1996, J. Log. Comput..

[5]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[6]  Joseph Y. Halpern,et al.  Towards a Theory of Knowledge and Ignorance: Preliminary Report , 1989, NMR.

[7]  Werner Nutt,et al.  Adding Epistemic Operators to Concept Languages , 1992, KR.

[8]  Victor W. Marek,et al.  Modal nonmonotonic logics: ranges, characterization, computation , 1991, JACM.

[9]  Daniele Nardi,et al.  A Preference Semantics for Ground Nonmonotonic Modal Logics , 1995, EPIA.

[10]  Camilla Schwind,et al.  A Tableau-Based Theorem Prover for a Decidable Subset of Default Logic , 1990, CADE.

[11]  Tsunehiro Aibara,et al.  Decision Procedure for Propositional Autoepistemic Logic , 1987 .

[12]  Yoav Shoham,et al.  Nonmonotonic Logics: Meaning and Utility , 1987, IJCAI.

[13]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[14]  Miroslaw Truszczynski,et al.  Minimal Knowledge Problem: A New Approach , 1994, Artif. Intell..

[15]  Grigori Schwarz In Search of a "True" Logic of Knowledge: The Nonmonotonic Perspective , 1995, Artif. Intell..

[16]  Georg Gottlob NP trees and Carnap's modal logic , 1995, JACM.

[17]  Joseph Y. Halpern,et al.  A Guide to Completeness and Complexity for Modal Logics of Knowledge and Belief , 1992, Artif. Intell..

[18]  Fabio Massacci,et al.  Strongly Analytic Tableaux for Normal Modal Logics , 1994, CADE.

[19]  Kurt Konolige,et al.  On the Relation Between Default and Autoepistemic Logic , 1987, Artif. Intell..

[20]  Grigori Schwarz Bounding Introspection in Nonmonotonic Logic , 1992, KR.

[21]  Robert C. Moore Semantical Considerations on Nonmonotonic Logic , 1985, IJCAI.

[22]  Grigori Schwarz,et al.  Minimal model semantics for nonmonotonic modal logics , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[23]  Francesco M. Donini,et al.  Ground Nonmonotonic Modal Logics for Knowledge Representation , 1995, WOCFAI.

[24]  Drew McDermott,et al.  Nonmonotonic Logic II: Nonmonotonic Modal Theories , 1982, JACM.

[25]  Ilkka Niemelä On the decidability and complexity of autoepistemic reasoning , 1992, Fundam. Informaticae.

[26]  Michael Kaminski,et al.  Nonmonotonic default modal logics , 1990, JACM.

[27]  Drew McDermott,et al.  Non-Monotonic Logic I , 1987, Artif. Intell..