Some Considerations on the Reason for Bloat

A representation-less model for genetic programming is presented. The model is intended to examine the mechanisms that lead to bloat in genetic programming (GP). We discuss two hypotheses (“fitness causes bloat” and “neutral code is protective”) and perform simulations to examine the predictions deduced from these hypotheses. Our observation is that predictions from both hypotheses are realized in the simulated model.

[1]  Peter J. Angeline,et al.  Genetic programming and emergent intelligence , 1994 .

[2]  Byoung-Tak Zhang,et al.  Genetic Programming of Minimal Neural Nets Using Occam's Razor , 1993, ICGA.

[3]  Riccardo Poli,et al.  Exact Schema Theory for Genetic Programming and Variable-Length Genetic Algorithms with One-Point Crossover , 2001, Genetic Programming and Evolvable Machines.

[4]  William B. Langdon,et al.  Size Fair and Homologous Tree Crossovers for Tree Genetic Programming , 2000, Genetic Programming and Evolvable Machines.

[5]  Peter Nordin,et al.  Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications , 1998 .

[6]  William B. Langdon,et al.  Scaling of Program Fitness Spaces , 1999, Evolutionary Computation.

[7]  Nicholas Freitag McPhee,et al.  Accurate Replication in Genetic Programming , 1995, ICGA.

[8]  L. Altenberg The evolution of evolvability in genetic programming , 1994 .

[9]  L. Altenberg EMERGENT PHENOMENA IN GENETIC PROGRAMMING , 1994 .

[10]  Hitoshi Iba,et al.  Genetic programming using a minimum description length principle , 1994 .

[11]  T. Soule,et al.  Code Size and Depth Flows in Genetic Programming , 1997 .

[12]  Peter J. Angeline,et al.  Competitive Environments Evolve Better Solutions for Complex Tasks , 1993, ICGA.

[13]  Riccardo Poli,et al.  Foundations of Genetic Programming , 1999, Springer Berlin Heidelberg.

[14]  Riccardo Poli,et al.  The evolution of size and shape , 1999 .

[15]  Robert L. Shrader,et al.  Electronic communication. , 1971, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde.

[16]  Lothar Thiele,et al.  Genetic Programming and Redundancy , 1994 .

[17]  Peter Nordin,et al.  Introns in Nature and in Simulated Structure Evolution , 1997, BCEC.

[18]  Walter Alden Tackett,et al.  Recombination, selection, and the genetic construction of computer programs , 1994 .

[19]  Wolfgang Banzhaf,et al.  A comparison of linear genetic programming and neural networks in medical data mining , 2001, IEEE Trans. Evol. Comput..

[20]  Christopher R. Stephens,et al.  Effective Fitness as an Alternative Paradigm for Evolutionary Computation I: General Formalism , 2000, Genetic Programming and Evolvable Machines.

[21]  W. Langdon The evolution of size in variable length representations , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[22]  Wolfgang Banzhaf,et al.  Genetic Programming: An Introduction , 1997 .

[23]  John R. Koza,et al.  Genetic programming (videotape): the movie , 1992 .

[24]  Riccardo Poli,et al.  Fitness Causes Bloat: Mutation , 1997, EuroGP.

[25]  Riccardo Poli,et al.  Genetic Programming Bloat with Dynamic Fitness , 1998, EuroGP.

[26]  Sean Luke,et al.  Issues in Scaling Genetic Programming: Breeding Strategies, Tree Generation, and Bloat , 2000 .

[27]  Terence Soule,et al.  Code growth in genetic programming , 1996 .

[28]  Riccardo Poli,et al.  Fitness Causes Bloat , 1998 .

[29]  Peter Nordin,et al.  Complexity Compression and Evolution , 1995, ICGA.

[30]  Christopher R. Stephens,et al.  Effective Fitness as an Alternative Paradigm for Evolutionary Computation II: Examples and Applications , 2001, Genetic Programming and Evolvable Machines.