Steady-state creep of single-phase crystalline matter at high temperature

Over the past 15 years important advances have been made in the experimental study of the microstructural changes occurring during the non-linear steady-state creep of single phase crystalline matter at elevated temperatures. Curiously, although the results of these painstaking studies have gone a long way toward elucidating the mechanism of this phenomenon, they have been largely ignored in favour of some simple dislocation mechanisms that are not only inconsistent with these observations, but are also unable to describe correctly the known phenomenology. This review concentrates primarily on the recent experiments on microstructural alterations occurring during creep; however, it also surveys the many mechanistic models that attempt to describe this phenomenon, and finds them all deficient.

[1]  J. Čadek,et al.  Interpretation of high temperature creep in alpha-zirconium in terms of effective stress and dislocation dynamics☆ , 1973 .

[2]  Lf Coffin,et al.  FATIGUE AT HIGH TEMPERATURE , 2013 .

[3]  H. Gleiter The migration of small angle boundaries , 1969 .

[4]  S. K. Maksimov,et al.  Dislocation structure of subgrain boundaries in creep‐deformed aluminium , 1973 .

[5]  W. A. Wong,et al.  DEFORMATION OF ALUMINIUM AT HIGH TEMPERATURES AND STRAIN RATES , 1967 .

[6]  W. Nix,et al.  Interpretation of high temperature plastic deformation in terms of measured effective stresses , 1970 .

[7]  G. B. Gibbs A general dislocation model for high-temperature creep , 1971 .

[8]  E. Andrade,et al.  The flow of polycrystalline metals under simple shear , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[9]  U. F. Kocks Laws for Work-Hardening and Low-Temperature Creep , 1976 .

[10]  William D. Nix,et al.  A model for steady state creep based on the motion of jogged screw dislocations , 1965 .

[11]  Frank Garofalo,et al.  Fundamentals of creep and creep-rupture in metals , 1965 .

[12]  S. K. Mitra,et al.  Cold Work and Recovery in Creep at Ostensibly Constant Structure , 1967 .

[13]  V. Sikka,et al.  Some aspects of Sub-boundary and mobile dislocations during high temperature creep of AISI 316 and 304 stainless steels , 1975 .

[14]  O. Sherby,et al.  INFLUENCE OF DIFFUSIVITY, ELASTIC MODULUS, AND STACKING FAULT ENERGY ON THE HIGH TEMPERATURE CREEP BEHAVIOR OF ALPHA BRASSES, , 1966 .

[15]  B. Wilshire,et al.  The effect of variations in stacking-fault energy on the creep of nickel-cobalt alloys , 1965 .

[16]  James C. M. Li,et al.  Possibility of Subgrain Rotation during Recrystallization , 1962 .

[17]  C. Ahlquist,et al.  Variation of dislocation density during elevated temperature creep of aluminum single crystals , 1972 .

[18]  B. Reppich,et al.  Steady state deformation and dislocation structure of pure and Mg-doped LiF single crystals. II. Etch pit studies of dislocation structure , 1973 .

[19]  F. Nichols On the stress dependence and activation area for creep , 1971 .

[20]  Hiroshi Oikawa,et al.  Interdiffusion in CuSn solid solutions. confirmation of anomalously large kirkendall effect , 1975 .

[21]  Tadao Watanabe,et al.  An Analysis of High Temperature Creep in Alpha Iron Based on the Super Jog Mechanism , 1970 .

[22]  Robert L. Coble,et al.  A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials , 1963 .

[23]  H. Evans,et al.  The Sintering of Cavities by Grain-Boundary Diffusion , 1970 .

[24]  G. Pollard,et al.  The Influence of Stacking-Fault Energy on the Creep Behaviour of ∞-Brasses , 1971 .

[25]  J. Čadek,et al.  Internal stress and dislocation structure of aluminum in high-temperature creep , 1972 .

[26]  D. Warrington,et al.  Sub-grain boundary migration in aluminium , 1972 .

[27]  O. Sherby,et al.  Constant structure creep tests and the influence of subgrain size on creep , 1974 .

[28]  G. B. Gibbs Creep and stress relaxation studies with polycrystalline magnesium , 1966 .

[29]  F. D. Richardson Dilute solutions in alloys comments on a paper by N.G. Gokcen , 1969 .

[30]  W. Nix,et al.  High temperature-low stress creep of Al and Al+0.5%Fe , 1972 .

[31]  T. Langdon,et al.  Creep behavior of Ni-W solid solutions , 1975 .

[32]  B. Burton Incubation Periods and the Friction Stress in Dislocation Creep , 1975 .

[33]  C. A. Johnson,et al.  The behaviour of jogs in dislocations , 1962 .

[34]  C. Sellars,et al.  The Creep of Copper, Copper–10 at.-% Nickel, and Copper–10 at.-% Gold , 1970 .

[35]  V. Lindroos,et al.  Knitting of dislocation networks by means of stress-induced climb in an aluminium-magnesium alloy , 1968 .

[36]  H. Oikawa,et al.  On the High-Temperature Creep Behaviour and Substructures in Alpha-Iron Single Crystals , 1972 .

[37]  J. Čadek,et al.  Dynamics of dislocations in high temperature creep of an Fe-3.5% Si alloy , 1972 .

[38]  J. Čadek,et al.  Some substructural aspects of high-temperature creep in metals , 1973 .

[39]  P. Hirsch,et al.  The flow stress of aluminium and copper at high temperatures , 1961 .

[40]  B. Reppich,et al.  Steady state deformation and dislocation structure of pure and Mg-doped LiF single crystals. I. Analysis of steady state deformation , 1973 .

[41]  J. Gittus Development of a theoretical equation for steady-state dislocation creep and comparison with data , 1974 .

[42]  J. B. Bilde-Soerensen Dislocation link length distribution in creep-deformed magnesium oxide , 1973 .

[43]  J. Čadek,et al.  High Temperature Creep in an Al9.5 at% Zn Solid Solution , 1971 .

[44]  J. E. Dorn,et al.  A Relationship between Transient and Steady-State Creep at Elevated Temperatures , 1969 .

[45]  J. Bilde-Sørensen Dislocation Structures in Creep-Deformed Polycrystalline MgO , 1972 .

[46]  O. Sherby,et al.  Effect of subgrain size on the high temperature strength of polycrystalline aluminium as determined by constant strain rate tests , 1975 .

[47]  T. Langdon,et al.  The transition from dislocation climb to viscous glide in creep of solid solution alloys , 1974 .

[48]  H. Oikawa,et al.  Dislocation density and internal stress in inverse transient creep of Fe-3.5at% Mo alloy , 1974 .

[49]  J. Čadek,et al.  An interpretation of steady state creep , 1972 .

[50]  W. Nix On the jogged screw dislocation model for steady state creep , 1967 .

[51]  J. Henderson,et al.  Creep Recovery of Commercially Pure Copper , 1968 .

[52]  K. Murty Transition from class I to class II creep behaviors at low stresses in Pb-9Sn , 1974 .

[53]  J. Weertman,et al.  Steady-State Creep of Crystals , 1957 .

[54]  W. Blum Role of Dislocation Annihilation during Steady‐State Deformation , 1971 .

[55]  J. Poirier High-temperature creep of single crystalline sodium chloride: II. investigation of the creep substructure , 1972 .

[56]  F. Nabarro Steady-state diffusional creep , 1967 .

[57]  J. Birch,et al.  The effect of stress changes during creep of single-and polycrystalline MgO , 1974 .

[58]  W. Nix,et al.  The measurement of internal stresses during creep of al and Al-Mg alloys , 1971 .

[59]  C. Grant The Evolutionary State Equation of Creep , 1974 .

[60]  H. Oikawa,et al.  Studies on the Substructure Developed during Creep Deformation of Copper Crystals , 1967 .

[61]  B. A. Wilcox,et al.  Creep behavior of molybdenum single crystals , 1970 .

[62]  A. J. Kennedy Creep and recovery in metals , 1953 .

[63]  H. Oikawa,et al.  Creep behavior of alpha-iron single crystals under the stress lower than the yield stress , 1971 .

[64]  J. Čadek,et al.  Dislocation structure and the effect of stacking-fault energy in high temperature creep of Cu-Al solid solutions , 1971 .

[65]  A. Higashi,et al.  Movement of Small Angle Boundary of Ice Crystal , 1961 .

[66]  B. Wilshire,et al.  Mechanisms of Creep and Recovery in Nimonic 80A , 1969 .

[67]  Helmut Kellerer,et al.  Deformation of titanium by surface oxidation , 1971 .

[68]  O. Sherby,et al.  Activation energy and sub grain size-creep rate relations in sodium chloride , 1974 .

[69]  Oleg D. Sherby,et al.  Mechanical behavior of crystalline solids at elevated temperature , 1968 .

[70]  Michael F. Ashby,et al.  The non-uniform flow of polycrystals by grain-boundary sliding accommodated by power-law creep , 1975 .

[71]  S. Karashima,et al.  Internal Stress and Dislocation Structure during Sigmoidal Transient Creep of a Copper–16 at.-% Aluminium Alloy , 1972 .

[72]  A. J. Kennedy Processes of creep and fatigue in metals , 1963 .

[73]  J. Weertman,et al.  Theory of Steady‐State Creep Based on Dislocation Climb , 1955 .

[74]  Ikumaro Kubo Crystal Growth of Zinc-oxide by Chemical Reaction of Zinc-fluoride with Air , 1961 .

[75]  E. W. Hart A theory for flow of polycrystals , 1967 .

[76]  B. Reppich,et al.  Formation and structure of dislocation networks developed during high-temperature deformation of MgO , 1974 .

[77]  T. Langdon,et al.  Method of estimating stacking-fault energies in alkali halide crystals using creep data , 1974 .

[78]  L. Cuddy,et al.  The effect of internal stress on the activation parameters for creep of Fe-Ni alloys , 1973 .

[79]  D. Mclean REVIEW ARTICLES: The physics of high temperature creep in metals , 1966 .

[80]  H. Oikawa,et al.  Transmission Electron Microscopy of Substructures Developed during High-Temperature Creep in Alpha-Iron , 1971 .

[81]  R. Lagneborg,et al.  Correlation between observed creep behaviour from in-situ experiments in the HVEM and predicted behaviour from the recovery creep theory , 1973 .

[82]  Conyers Herring,et al.  Diffusional Viscosity of a Polycrystalline Solid , 1950 .

[83]  H. Oikawa,et al.  Activation Parameters of High-Temperature Creep in Nickel, and in Ni-9.5at% Cr and Ni-10.3at% W Alloys , 1973 .

[84]  H. Oikawa,et al.  Effect of stacking-fault energy on steady-state creep rates in copper-base solid solutions , 1971 .

[85]  J.C.M. Li A dislocation mechansim of transient creep , 1963 .

[86]  B. Ilschner,et al.  AN ANALYSIS OF THE CREEP BEHAVIOUR OF IRON--MOLYBDENUM SOLID SOLUTIONS. , 1969 .

[87]  T. Alden Theory of plastic flow in strain-hardened metals , 1972 .

[88]  J. Gittus A model of creep embodying dislocations whose movements produce work hardening and recovery , 1970 .

[89]  John J. Jonas,et al.  Strength and structure under hot-working conditions , 1969 .

[90]  H. Oikawa,et al.  On the stress exponent and the rate-controlling mechanism of high-temperature creep in some solid solutions , 1974, Metallurgical and Materials Transactions B.

[91]  J. Embury,et al.  The Role of Internal Stress in the High-Temperature Deformation of Copper , 1970 .

[92]  J. Jonas The back stress in high temperature deformation , 1969 .

[93]  J. Birch,et al.  Transient and steady state creep behaviour of polycrystalline MgO , 1974 .

[94]  M. Kitagawa,et al.  Influence of temperature on reversed creep , 1969 .

[95]  S. Karashima,et al.  An Interpretation of Creep Deformation in Alpha-Iron from the Viewpoint of Dynamic Recovery , 1970 .

[96]  H. Oikawa,et al.  Transmission Electron Microscopy of Substructures Formed During High-Temperature Creep in Al-Mg Alloys , 1974 .

[97]  D. L. Holt,et al.  The Dislocation Cell IZE AND Dislocation Density in Copper Deformed at Temperatures between 25 and 700 Degrees C. , 1972 .

[98]  V. Cosslett,et al.  High-Voltage Electron Microscopy , 1968, Quarterly Reviews of Biophysics.

[99]  S. Karashima,et al.  Etch-Pit Studies of the Dislocation Structures Developed during Creep Deformation of Copper Single Crystals , 1970 .

[100]  J. Čadek,et al.  Effective stress in steady state creep in an Al-5.5 at.% Mg solid solution , 1973 .

[101]  H. Oikawa,et al.  Steady-State Creep Characteristics of Fe-3.5 at% Mo Alloy , 1973 .

[102]  R. Lagneborg Dislocation Density and Dislocation Arrangement during Creep of 20% Cr–35% Ni Stainless Steels , 1969 .

[103]  William D. Nix,et al.  Average internal stresses in LiF single crystals during high temperature creep , 1971 .

[104]  A. Wolfenden,et al.  On the question of void formation in neutron irradiated zirconium , 1972 .

[105]  E. Parker,et al.  Stress-induced movement of crystal boundaries , 1953 .

[106]  L. Cuddy Internal stresses and structures developed during creep , 1970 .

[107]  S. K. Mitra,et al.  Work hardening and recovery in creep , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[108]  J. Čadek,et al.  On the origin of the dislocation substructure during high-temperature creep , 1970 .

[109]  J. Čadek,et al.  Steady-state creep in alpha iron as described in terms of effective stress and dislocation dynamics , 1973 .

[110]  B. Wilshire,et al.  On internal stress measurement and the mechanism of high temperature creep , 1971 .

[111]  J. A. Pask,et al.  The mechanism of creep in polycrystalline magnesium oxide , 1970 .

[112]  N. Mott CXVII. A theory of work-hardening of metal crystals , 1952 .

[113]  K. R. Williams,et al.  The recovery creep of niobium-stabilised austenitic stainless steels , 1970 .

[114]  H. Oikawa,et al.  Some Activation Parameters in Steady-State Creep of Aluminium–Magnesium Alloys at High Temperatures , 1974 .

[115]  S. Karashima,et al.  X-Ray Studies of the Substructure Formed during Creep Deformation of Copper Single Crystals , 1970 .

[116]  B. A. Wilcox,et al.  DISLOCATION SUBSTRUCTURE INDUCED BY CREEP IN MOLYBDENUM SINGLE CRYSTALS. , 1970 .

[117]  S. Karashima,et al.  High-temperature creep rate and dislocation structure in a dilute copper-aluminium alloy , 1973 .

[118]  J. E. Dorn,et al.  VISCOUS CREEP OF ALUMINUM NEAR ITS MELTING TEMPERATURE. Technical Report No. 48 , 1957 .

[119]  B. Reppich,et al.  Dislocation structure during creep of MgO single crystals , 1973 .

[120]  H. Masumoto,et al.  Elastic Anisotropy and its Temperature Variation of Single Crystals of the High Elasticity Alloy “Dia-flex” in the Co–Fe–Ni–Cr–W–Mo System , 1968 .

[121]  J. Birch,et al.  Work hardening and recovery during compressive creep of polycrystalline MgO , 1974 .

[122]  O. Sherby,et al.  Mechanical behavior of polycrystalline tungsten at elevated temperature , 1969 .

[123]  C. R. Barrett A note on the creep substructure of pure copper , 1965 .

[124]  K. A. Padmanabhan,et al.  Superplasticity: A review , 1970 .

[125]  N. Balasubramanian,et al.  The activation areas for creep deformation , 1970 .

[126]  H. Granjon,et al.  Essais de rupture fragile de diverses nuances d’acier moulé non allié en relation avec leur soudabilit , 1966 .

[127]  W. Nix,et al.  A study of high temperature creep in LiF single crystals , 1971 .

[128]  J. Weertman,et al.  Steady‐State Creep through Dislocation Climb , 1957 .

[129]  W. Nix,et al.  Interpretation of the Recovery/Work-Hardening Model of Creep , 1970 .

[130]  J. Čadek,et al.  On the lattice misorientation in copper single crystals after high-temperature creep , 1971 .

[131]  J. Čadek,et al.  Effective stress in steady-state creep in alpha Cu–Zn solid solutions , 1975 .

[132]  J. Gittus Theoretical equation for steady state dislocation creep: Effect of solute drag , 1974 .

[133]  J. Čadek,et al.  Dislocation structure and applied, effective and internal stress in high-temperature creep of alpha iron , 1972 .

[134]  Choh Hao Li,et al.  RECENT OBSERVATIONS ON THE MOTION OF SMALL ANGLE DISLOCATION BOUNDARIES , 1954 .

[135]  R. Lagneborg Development and Refinement of the Recovery-Creep Theory , 1969 .

[136]  W. Evans,et al.  The high temperature creep and fracture behavior of 70-30 alpha-brass , 1970 .

[137]  G. J. Lloyd,et al.  On the anelastic contribution to creep , 1973 .

[138]  J. Gittus Strain, recovery and work-hardening during creep due to dislocations , 1971 .

[139]  D. L. Holt,et al.  Dislocation Cell Formation in Metals , 1970 .

[140]  K. R. Williams,et al.  Stress-Change Experiments during High-Temperature Creep of Copper, Iron, and Zinc , 1973 .

[141]  S. Karashima,et al.  Studies on the Substructure Developed during Creep of Aluminium , 1968 .

[142]  A. Keh,et al.  Substructure formation in iron during creep at 600°c , 1961 .

[143]  W. Johnston,et al.  Dislocation Velocities, Dislocation Densities, and Plastic Flow in Lithium Fluoride Crystals , 1959 .

[144]  R. Lagneborg A Modified Recovery-Creep Model and Its Evaluation , 1972 .

[145]  H. Oikawa,et al.  Creep Mechanism of AI-Mg Alloys at High Temperatures , 1975 .

[146]  J. Moteff,et al.  Substructure of type 316 stainless steel deformed in slow tension at temperatures between 21° and 816°C , 1973 .

[147]  V. P. Gupta,et al.  DISLOCATION STRUCTURES IN COPPER SINGLE CRYSTALS DEFORMED IN HIGH TEMPERATURE CREEP , 1967 .

[148]  P. Haasen,et al.  Dislocations and Plastic Flow in the Diamond Structure , 1969 .

[149]  J. Herd,et al.  Creep under Varying Load , 1973 .

[150]  M. Otsuka,et al.  Mechanism of High Temperature Creep of Aluminum- Magnesium Solid Solution Alloys , 1972 .

[151]  S. Karashima,et al.  Transmission Electron Microscope Studies on the Behaviours of Dislocations during Creep Deformation of Copper Single Crystals , 1970 .