CN ANOMALIES IN THE HALO SYSTEM AND THE ORIGIN OF GLOBULAR CLUSTERS IN THE MILKY WAY

We explore the kinematics and orbital properties of a sample of red giants in the halo system of the Milky Way that are thought to have formed in globular clusters based on their anomalously strong UV/blue CN bands. The orbital parameters of the CN-strong halo stars are compared to those of the inner- and outer-halo populations as described by Carollo et al., and to the orbital parameters of globular clusters with well-studied Galactic orbits. The CN-strong field stars and the globular clusters both exhibit kinematics and orbital properties similar to the inner-halo population, indicating that stripped or destroyed globular clusters could be a significant source of inner-halo field stars, and suggesting that both the CN-strong stars and the majority of globular clusters are primarily associated with this population.

[1]  G. Lewis,et al.  Metallicity Bias in the Kinematics of the Milky Way Stellar Halo , 2012, 1212.4576.

[2]  T. Beers,et al.  VERY METAL-POOR OUTER-HALO STARS WITH ROUND ORBITS , 2012, 1212.4296.

[3]  S. McMillan,et al.  Dynamical evolution and spatial mixing of multiple population globular clusters , 2012, 1212.2651.

[4]  Ž. Ivezić,et al.  THE STELLAR METALLICITY DISTRIBUTION FUNCTION OF THE GALACTIC HALO FROM SDSS PHOTOMETRY , 2012, 1211.7073.

[5]  David W. Hogg,et al.  THE MILKY WAY'S CIRCULAR-VELOCITY CURVE BETWEEN 4 AND 14 kpc FROM APOGEE DATA , 2012, 1209.0759.

[6]  J. Chanamé,et al.  OXYGEN ABUNDANCES IN LOW- AND HIGH-α FIELD HALO STARS AND THE DISCOVERY OF TWO FIELD STARS BORN IN GLOBULAR CLUSTERS , 2012, 1208.3675.

[7]  J. Rhoads,et al.  FORMATION OF METAL-POOR GLOBULAR CLUSTERS IN Lyα EMITTING GALAXIES IN THE EARLY UNIVERSE , 2012, 1207.5151.

[8]  Judy Y. Cheng,et al.  A SHORT SCALE LENGTH FOR THE α-ENHANCED THICK DISK OF THE MILKY WAY: EVIDENCE FROM LOW-LATITUDE SEGUE DATA , 2012, 1204.5179.

[9]  R. Schiavon,et al.  ULTRAVIOLET PROPERTIES OF GALACTIC GLOBULAR CLUSTERS WITH GALEX. II. INTEGRATED COLORS , 2012, 1301.4329.

[10]  R. Smart,et al.  The kinematic properties of BHB and RR Lyrae stars towards the Anticentre and the North Galactic Pole: the transition between the inner and the outer halo , 2012, 1203.2146.

[11]  K. Bekki Formation of massive globular clusters with heavy element abundance spread in the Galactic building blocks , 2011, 1112.3710.

[12]  T. Beers,et al.  THE METALLICITY DISTRIBUTION FUNCTIONS OF SEGUE G AND K DWARFS: CONSTRAINTS FOR DISK CHEMICAL EVOLUTION AND FORMATION , 2011, 1112.2214.

[13]  J. Schaye,et al.  Global structure and kinematics of stellar haloes in cosmological hydrodynamic simulations , 2011, 1111.1747.

[14]  Garching,et al.  Chemical signatures of formation processes in the stellar populations of simulated galaxies , 2011, 1110.5864.

[15]  A. Schwope,et al.  Post-common envelope binaries from SDSS – XIV. The DR7 white dwarf–main-sequence binary catalogue , 2011, 1110.1000.

[16]  T. Beers,et al.  Building the Galactic halo from globular clusters: evidence from chemically unusual red giants , 2011, 1109.3916.

[17]  Ž. Ivezić,et al.  FORMATION AND EVOLUTION OF THE DISK SYSTEM OF THE MILKY WAY: [α/Fe] RATIOS AND KINEMATICS OF THE SEGUE G-DWARF SAMPLE , 2011, 1104.3114.

[18]  D. York,et al.  THE CASE FOR THE DUAL HALO OF THE MILKY WAY , 2011, 1104.2513.

[19]  T. Beers,et al.  CARBON-ENHANCED METAL-POOR STARS IN THE INNER AND OUTER HALO COMPONENTS OF THE MILKY WAY , 2011, 1103.3067.

[20]  Claudio Dalla Vecchia,et al.  Cosmological simulations of the formation of the stellar haloes around disc galaxies , 2011, 1102.2526.

[21]  C. Conroy ON THE BIRTH MASSES OF THE ANCIENT GLOBULAR CLUSTERS , 2011, 1101.2208.

[22]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[23]  Toulouse,et al.  A new perspective on globular clusters, their initial mass function and their contribution to the stellar halo and the cosmic reionization , 2011, 1101.1073.

[24]  Sergey E. Koposov,et al.  QUANTIFYING KINEMATIC SUBSTRUCTURE IN THE MILKY WAY'S STELLAR HALO , 2010, 1011.1925.

[25]  David K. Lai,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. V. ESTIMATION OF ALPHA-ELEMENT ABUNDANCE RATIOS FROM LOW-RESOLUTION SDSS/SEGUE STELLAR SPECTRA , 2010, 1010.2934.

[26]  S. Martell,et al.  LIGHT-ELEMENT ABUNDANCE VARIATIONS AT LOW METALLICITY: THE GLOBULAR CLUSTER NGC 5466 , 2010, 1009.0649.

[27]  T. Girard,et al.  SPACE VELOCITIES OF SOUTHERN GLOBULAR CLUSTERS. VI. NINE CLUSTERS IN THE INNER MILKY WAY , 2010, 1008.4545.

[28]  T. Beers,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. IV. VALIDATION WITH AN EXTENDED SAMPLE OF GALACTIC GLOBULAR AND OPEN CLUSTERS , 2010, 1008.1959.

[29]  S. McMillan,et al.  THE FRACTION OF GLOBULAR CLUSTER SECOND-GENERATION STARS IN THE GALACTIC HALO , 2010, 1007.1668.

[30]  S. Majewski,et al.  ASSESSING THE MILKY WAY SATELLITES ASSOCIATED WITH THE SAGITTARIUS DWARF SPHEROIDAL GALAXY , 2010, 1005.5390.

[31]  E. Grebel,et al.  Light-element Abundance Variations in the Milky Way Halo , 2010, 1005.4070.

[32]  S. McMillan,et al.  Abundance patterns of multiple populations in globular clusters: a chemical evolution model based on yields from AGB ejecta , 2010, 1005.1892.

[33]  D. Hogg,et al.  THE DUAL ORIGIN OF STELLAR HALOS. II. CHEMICAL ABUNDANCES AS TRACERS OF FORMATION HISTORY , 2010, 1004.3789.

[34]  S. Lucatello,et al.  Properties of stellar generations in globular clusters and relations with global parameters , 2010, 1003.1723.

[35]  William J. Schuster,et al.  Two distinct halo populations in the solar neighborhood - Evidence from stellar abundance ratios and kinematics , 2010, 1002.4514.

[36]  D. Forbes,et al.  Accreted versus in situ Milky Way globular clusters , 2010, 1001.4289.

[37]  S. D. Mink,et al.  Massive binaries as the source of abundance anomalies in globular clusters , 2009, 0910.1086.

[38]  Ž. Ivezić,et al.  STRUCTURE AND KINEMATICS OF THE STELLAR HALOS AND THICK DISKS OF THE MILKY WAY BASED ON CALIBRATION STARS FROM SLOAN DIGITAL SKY SURVEY DR7 , 2009, 0909.3019.

[39]  S. Lucatello,et al.  Na-O Anticorrelation and HB. VII. The chemical composition of first and second-generation stars in 15 globular clusters from GIRAFFE spectra , 2009, 0909.2938.

[40]  Garching,et al.  Na-O anticorrelation and HB - VIII. Proton-capture elements and metallicities in 17 globular clusters from UVES spectra , 2009, 0909.2941.

[41]  T. Beers,et al.  Structure and Kinematics of the Stellar Halos and Thick Disks of the Milky Way Based on Calibration Stars from SDSS DR7 , 2009, Proceedings of the International Astronomical Union.

[42]  T. Wong,et al.  THE INFLUENCE OF FAR-ULTRAVIOLET RADIATION ON THE PROPERTIES OF MOLECULAR CLOUDS IN THE 30 DOR REGION OF THE LARGE MAGELLANIC CLOUD , 2009, 0907.5186.

[43]  Cambridge,et al.  CONSTRAINING THE MILKY WAY POTENTIAL WITH A SIX-DIMENSIONAL PHASE-SPACE MAP OF THE GD-1 STELLAR STREAM , 2009, 0907.1085.

[44]  Heidi Jo Newberg,et al.  SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.

[45]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[46]  R. Terlevich,et al.  GEMINI/GMOS SEARCH FOR MASSIVE BINARIES IN THE IONIZING CLUSTER OF 30 DOR , 2008, 0811.4748.

[47]  S. McMillan,et al.  Formation and dynamical evolution of multiple stellar generations in globular clusters , 2008, 0809.1438.

[48]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[49]  David G. Monet,et al.  ERRATUM: “AN IMPROVED PROPER-MOTION CATALOG COMBINING USNO-B AND THE SLOAN DIGITAL SKY SURVEY” (2004, AJ, 127, 3034) , 2008 .

[50]  S. Martell,et al.  An Improved Bandstrength Index for the CH G Band of Globular Cluster Giants , 2008, 0806.0012.

[51]  E. Grebel,et al.  Comparing CN and CH line strengths in a homogeneous spectroscopic sample of 8 Galactic globular clusters , 2008, 0805.1067.

[52]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[53]  P. Kroupa,et al.  The influence of residual gas expulsion on the evolution of the Galactic globular cluster system and the origin of the Population II halo , 2007, 0712.1591.

[54]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[55]  B. Yanny,et al.  Submitted for publication in the Astronomical Journal The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars 1 , 2022 .

[56]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. II. VALIDATION WITH GALACTIC GLOBULAR AND OPEN CLUSTERS , 2007, 0710.5778.

[57]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. I. DESCRIPTION AND COMPARISON OF INDIVIDUAL METHODS , 2007, 0710.5645.

[58]  D. York,et al.  Two stellar components in the halo of the Milky Way , 2007, Nature.

[59]  S. M. Fall,et al.  SHAPING THE GLOBULAR CLUSTER MASS FUNCTION BY STELLAR-DYNAMICAL EVAPORATION , 2022 .

[60]  G. Meynet,et al.  Fast rotating massive stars and the origin of the abundance patterns in galactic globular clusters , 2006, astro-ph/0611379.

[61]  T. Beers,et al.  Bright Metal-poor Stars from the Hamburg/ESO Survey. I. Selection and Follow-up Observations from 329 Fields , 2006, astro-ph/0608332.

[62]  J. Prieto,et al.  Dynamical Evolution of Globular Clusters in Hierarchical Cosmology , 2006, Proceedings of the International Astronomical Union.

[63]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[64]  T. Beers,et al.  THE DISCOVERY AND ANALYSIS OF VERY METAL-POOR STARS IN THE GALAXY , 2005 .

[65]  R. Gratton,et al.  Abundance Variations within Globular Clusters , 2004 .

[66]  E. Tolstoy,et al.  Stellar Chemical Signatures and Hierarchical Galaxy Formation , 2004, astro-ph/0406120.

[67]  David G. Monet,et al.  An Improved Proper-Motion Catalog Combining USNO-B and the Sloan Digital Sky Survey , 2004 .

[68]  Judith Cohen,et al.  Palomar 12 as a Part of the Sagittarius Stream: The Evidence from Abundance Ratios , 2003, astro-ph/0311187.

[69]  A. Kravtsov,et al.  Formation of Globular Clusters in Hierarchical Cosmology , 2003, astro-ph/0305199.

[70]  R. Ibata,et al.  Building Up the Globular Cluster System of the Milky Way: The Contribution of the Sagittarius Galaxy , 2002, astro-ph/0210596.

[71]  A. Boesgaard,et al.  Abundances from High-Resolution Spectra of Kinematically Interesting Halo Stars , 2002 .

[72]  Judith G. Cohen,et al.  Abundances in Stars from the Red Giant Branch Tip to Near the Main-Sequence Turnoff in M71. III. Abundance Ratios , 2001, astro-ph/0111572.

[73]  Christopher Palma,et al.  On the Distribution of Orbital Poles of Milky Way Satellites , 2001, astro-ph/0108474.

[74]  Paolo Ventura,et al.  Predictions for Self-Pollution in Globular Cluster Stars , 2001 .

[75]  S. Lucatello,et al.  The O-Na and Mg-Al anticorrelations in turn-off and early subgiants in globular clusters , 2000, astro-ph/0012457.

[76]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[77]  T. Beers,et al.  Kinematics of Metal-poor Stars in the Galaxy. III. Formation of the Stellar Halo and Thick Disk as Revealed from a Large Sample of Nonkinematically Selected Stars , 2000, astro-ph/0003087.

[78]  Terrence M. Girard,et al.  Space Velocities of Globular Clusters. III. Cluster Orbits and Halo Substructure , 1999 .

[79]  Q. Wang Structure and Evolution of Hot Gas in 30 Dor , 1998, astro-ph/9811031.

[80]  Russell D. Cannon,et al.  Carbon and nitrogen abundance variations on the main sequence of 47 Tucanae , 1998 .

[81]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[82]  Philip Massey,et al.  Star Formation in R136: A Cluster of O3 Stars Revealed by Hubble Space Telescope Spectroscopy , 1998 .

[83]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[84]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[85]  C. Sneden,et al.  Proton Capture Chains in Glubular Cluster Stars. I. Evidence for Deep Mixing Based on Sodium and Magnesium Abundances in M13 Giants , 1996 .

[86]  R. P. Kraft ABUNDANCE DIFFERENCES AMONG GLOBULAR CLUSTER GIANTS: PRIMORDIAL VS. EVOLUTIONARY SCENARIOS , 1994 .

[87]  D. Lynden-Bell,et al.  Review of galactic constants , 1986 .

[88]  R. Zinn The globular cluster system of the galaxy. IV - The halo and disk subsystems , 1985 .

[89]  J. Kennicutt Structural properties of giant H II regions in nearby galaxies. , 1984 .

[90]  G. Costa,et al.  Correlated cyanogen and sodium anomalies in the globular clusters 47 Tuc and NGC 6752 , 1981 .

[91]  K. Freeman,et al.  The abundance spread in the giants of NGC 6752. , 1981 .

[92]  S. White,et al.  The kinematics and dynamics of the galactic globular cluster system , 1980 .

[93]  R. Zinn,et al.  Compositions of halo clusters and the formation of the galactic halo , 1978 .

[94]  M. Feast THE STELLAR CONTENT OF LOCAL GROUP GALAXIES , 2015 .