Effects of Polishing Treatments on the Interface between Garnet Solid Electrolyte and Lithium Metal

[1]  N. Zhao,et al.  Improved stability against moisture and lithium metal by doping F into Li3InCl6 , 2022, Journal of Power Sources.

[2]  Z. Wen,et al.  Grain Boundary Engineering Enabled High‐Performance Garnet‐Type Electrolyte for Lithium Dendrite Free Lithium Metal Batteries , 2022, Small methods.

[3]  Z. Wen,et al.  Improvement of Density and Electrochemical Performance of Garnet-Type Li7la3zr2o12 for Solid-State Lithium Metal Batteries Enabled by W and Ta Co-Doping Strategy , 2022, SSRN Electronic Journal.

[4]  K. Kang,et al.  High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility , 2022, Nature Communications.

[5]  Z. Wen,et al.  In-situ constructed lithium-salt lithiophilic layer inducing bi-functional interphase for stable LLZO/Li interface , 2022, Energy Storage Materials.

[6]  Xiao Ji,et al.  Tuning Interface Lithiophobicity for Lithium Metal Solid-State Batteries , 2021, ACS Energy Letters.

[7]  Delai Qian,et al.  Fast Li-ion transport pathways via 3D continuous networks in homogeneous garnet-type electrolyte for solid-state lithium batteries , 2021, Energy Storage Materials.

[8]  T. Zhai,et al.  Air Sensitivity and Degradation Evolution of Halide Solid State Electrolytes upon Exposure , 2021, Advanced Functional Materials.

[9]  D. Wood,et al.  Improving Contact Impedance via Electrochemical Pulses Applied to Lithium–Solid Electrolyte Interface in Solid-State Batteries , 2021, ACS Energy Letters.

[10]  M. Kovalenko,et al.  Building a Better Li‐Garnet Solid Electrolyte/Metallic Li Interface with Antimony , 2021, Advanced Energy Materials.

[11]  Fangling Jiang,et al.  Surface Coordination Interphase Stabilizes Solid-State Battery. , 2021, Angewandte Chemie.

[12]  Bingbing Tian,et al.  Phase transformation and grain-boundary segregation in Al-Doped Li7La3Zr2O12 ceramics , 2021 .

[13]  She-huang Wu,et al.  Electrochemical Characteristics of a Polymer/Garnet Trilayer Composite Electrolyte for Solid-State Lithium-Metal Batteries. , 2021, ACS applied materials & interfaces.

[14]  Wei Liu,et al.  All‐Solid‐State Batteries with a Limited Lithium Metal Anode at Room Temperature using a Garnet‐Based Electrolyte , 2020, Advanced materials.

[15]  Z. Wen,et al.  A 3D Cross‐Linking Lithiophilic and Electronically Insulating Interfacial Engineering for Garnet‐Type Solid‐State Lithium Batteries , 2020, Advanced Functional Materials.

[16]  Xuning Feng,et al.  Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes , 2020, Nature Communications.

[17]  N. Zhao,et al.  Comprehensive Investigation into Garnet Electrolytes Toward Application-Oriented Solid Lithium Batteries , 2020, Electrochemical Energy Reviews.

[18]  A. Manthiram,et al.  Anode‐Free Full Cells: A Pathway to High‐Energy Density Lithium‐Metal Batteries , 2020, Advanced Energy Materials.

[19]  Michael J. Wang,et al.  Characterizing the Li-Solid-Electrolyte Interface Dynamics as a Function of Stack Pressure and Current Density , 2019, Joule.

[20]  Peter Zapol,et al.  Dopant‐Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal , 2019, Advanced Energy Materials.

[21]  L. M. Rodriguez-Martinez,et al.  Opportunities for Rechargeable Solid-State Batteries Based on Li-Intercalation Cathodes , 2018, Joule.

[22]  T. Asano,et al.  Solid Halide Electrolytes with High Lithium‐Ion Conductivity for Application in 4 V Class Bulk‐Type All‐Solid‐State Batteries , 2018, Advanced materials.

[23]  Yutao Li,et al.  PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic” , 2017 .

[24]  Donald J. Siegel,et al.  Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7La3Zr2O12 , 2017 .

[25]  Venkatasubramanian Viswanathan,et al.  Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries , 2017 .

[26]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[27]  H. Munakata,et al.  Effect of Gold Layer on Interface Resistance between Lithium Metal Anode and Li6.25Al0.25La3Zr2O12 Solid Electrolyte , 2017 .

[28]  M. Wilkening,et al.  Synthesis, Crystal Structure, and Stability of Cubic Li7–xLa3Zr2–xBixO12 , 2016, Inorganic chemistry.

[29]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[30]  Lei Cheng,et al.  Structural and Electrochemical Consequences of Al and Ga Cosubstitution in Li7La3Zr2O12 Solid Electrolytes , 2016, Chemistry of materials : a publication of the American Chemical Society.

[31]  Asma Sharafi,et al.  Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density , 2016 .

[32]  Donald J. Siegel,et al.  Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO) , 2016 .

[33]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[34]  Ashok Kumar Baral,et al.  Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage. , 2015, The journal of physical chemistry letters.

[35]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[36]  D. Rettenwander,et al.  Synthesis and crystal chemistry of the fast Li-ion conductor Li7La3Zr2O12 doped with Fe. , 2013, Inorganic chemistry.

[37]  John B Goodenough,et al.  Evolution of strategies for modern rechargeable batteries. , 2013, Accounts of chemical research.

[38]  Toshihiro Kasuga,et al.  Concerted Migration Mechanism in the Li Ion Dynamics of Garnet-Type Li7La3Zr2O12 , 2013 .

[39]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[40]  R. Murugan,et al.  High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet , 2011 .

[41]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[42]  Marina Mastragostino,et al.  Thermal stability and flammability of electrolytes for lithium-ion batteries , 2011 .

[43]  Martin Fisch,et al.  Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. , 2011, Inorganic chemistry.

[44]  Y. Idemoto,et al.  Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12 , 2011 .

[45]  V. Thangadurai,et al.  Li6ALa2Nb2O12 (A=Ca, Sr, Ba): A New Class of Fast Lithium Ion Conductors with Garnet-Like Structure , 2005 .

[46]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.