The x-ray telescope of CAST

The CERN Axion Solar Telescope (CAST) has been in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting x-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type x-ray mirror system. With the x-ray telescope of CAST a background reduction of more than 2 orders of magnitude is achieved, such that for the first time the axion photon coupling constant gaγγ can be probed beyond the best astrophysical constraints gaγγ < 1 × 10−10 GeV−1.

[1]  J. Vieira,et al.  An improved limit on the axion–photon coupling from the CAST experiment , 2007 .

[2]  Wolfgang Burkert,et al.  X-ray tests and calibrations of the ABRIXAS mirror systems , 1998, Optics & Photonics.

[3]  M. Mutterer,et al.  First results from the CERN axion solar telescope. , 2005 .

[4]  M. Davenport,et al.  The CAST time projection chamber , 2007, physics/0702189.

[5]  R. Peccei,et al.  CP Conservation in the Presence of Pseudoparticles , 1977 .

[6]  B. Ramsey,et al.  The MPE X-ray test facility PANTER: Calibration of hard X-ray (15–50 kev) optics , 2006 .

[7]  G. Heusser,et al.  Low-Radioactivity Background Techniques , 1995 .

[8]  S. Weinberg A new light boson , 1978 .

[9]  McIntyre,et al.  Design for a practical laboratory detector for solar axions. , 1989, Physical review. D, Particles and fields.

[10]  Herbert Schwarz,et al.  Mirror system for the German x-ray satellite ABRIXAS: I. Flight mirror fabrication, integration, and testing , 1998, Optics & Photonics.

[11]  G. Charpak,et al.  Micromegas, a multipurpose gaseous detector , 2002 .

[12]  The Micromegas detector of the CAST experiment , 2007, physics/0702190.

[13]  U. Prechtel,et al.  The MPI/AIT X-ray imager (MAXI) — High speed pn CCDs for X-ray detection , 1989 .

[14]  H. Wolter Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen , 1952 .

[15]  G. Charpak,et al.  MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particle-flux environments , 1996 .

[16]  P. Sikivie Experimental Tests of the "INVISIBLE" Axion , 1983 .

[17]  Gerhard Derst,et al.  Mirror system for the German x-ray satellite ABRIXAS: II. Design and mirror development , 1998, Optics & Photonics.

[18]  Oswald H. W. Siegmund,et al.  EUV, X-ray, and gamma-ray instrumentation for astronomy VIII : 30 July - 1 August 1997, San Diego, California, Oswald H. W. Siegmund, Mark A. Gummin, chairs/editors ; sponsored and published by SPIE--the International Society for Optical Engineering , 1994 .

[19]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[20]  Norbert Meidinger,et al.  Modeling the energy response of pn-CCDs in the 0.2–10 keV band , 2000 .

[21]  Elmar Pfeffermann,et al.  The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera , 2001 .