Nanoimprint of dehydrated PEDOT:PSS for organic photovoltaics

We demonstrate the fabrication of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) nanogratings by a dehydration-assisted nanoimprint lithographic technique. Dehydration of PEDOT:PSS increases its cohesion to protect the nanostructures formed by nanoimprinting during demolding, resulting in the formation of high quality nanogratings of 60 nm in height, 70 nm in width and 70 nm in spacing (aspect ratio of 0.86). PEDOT:PSS nanogratings are used as hole transport and an electron blocking layer in blended poly(3-hexylthiophene-2,5-diyl) (P3HT):[6,6]-penyl-C61-butyric-acid-methyl-ester (PCBM) organic photovoltaic devices (OPV), showing enhancement of photocurrent and power efficiency in comparison to OPV devices with non-patterned PEDOT:PSS films.

[1]  R. Curry,et al.  Low cost patterning of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) films to increase organic photovoltaic device efficiency , 2008 .

[2]  D. K. Owens,et al.  Estimation of the surface free energy of polymers , 1969 .

[3]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[4]  Mukti Aryal,et al.  Imprinted large-scale high density polymer nanopillars for organic solar cells , 2008 .

[5]  J. Gilman,et al.  Nanotechnology , 2001 .

[6]  D. A. Grinko,et al.  PEDOT:PSS films—Effect of organic solvent additives and annealing on the film conductivity , 2009 .

[7]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[8]  Martin A. Green,et al.  Solar cell efficiency tables (Version 34) , 2009 .

[9]  Heon Lee,et al.  Direct indium tin oxide patterning using thermal nanoimprint lithography for highly efficient optoelectronic devices , 2009 .

[10]  D. Dissanayake,et al.  Enhanced photovoltaic performance in nanoimprinted pentacene-PbS nanocrystal hybrid device , 2008 .

[11]  X. Zhao,et al.  Lithographically defined uniform worm-shaped polymeric nanoparticles , 2010, Nanotechnology.

[12]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[13]  A. Zakhidov,et al.  Nanoimprinted P3HT/C60 solar cells optimized by oblique deposition of C60 , 2010 .

[14]  Gang Liu,et al.  Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer , 2008 .

[15]  Jin Young Kim,et al.  Processing additives for improved efficiency from bulk heterojunction solar cells. , 2008, Journal of the American Chemical Society.

[16]  P. Heremans,et al.  Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic heterojunction solar cells , 2008, Nanotechnology.

[17]  Udo Lang,et al.  Piezoresistive properties of PEDOT: PSS , 2009 .

[18]  C. Shih,et al.  Efficiency improvement of blended poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 solar cells by nanoimprinting , 2009 .

[19]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[20]  Mukti Aryal,et al.  Nano-confinement Induced Chain Alignment in Ordered P3ht Nanostructures Defined by Nanoimprint Lithography High-density, and Ordered Nanostructures in Conjugated Polymer Poly(3-hexylthiophene) or P3ht, and Also to Simultaneously Control 3d Chain Alignment within These P3ht Nanostructures. Out-of-pla , 2022 .

[21]  D. Nanditha,et al.  Operation of a reversed pentacene-fullerene discrete heterojunction photovoltaic device 10.1063/1 , 2007 .

[22]  P. Lugli,et al.  Nanostructured interfaces in polymer solar cells , 2010 .

[23]  L. Jay Guo,et al.  Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes , 2008 .

[24]  J. Dual,et al.  Mechanical characterization of PEDOT : PSS thin films , 2009 .