Design of modular concrete heliostats using symmetry reduction methods

[1]  Andreas Pfahl,et al.  Survey of Heliostat Concepts for Cost Reduction , 2014 .

[2]  Georgios Gaganelis,et al.  Downsizing weight while upsizing efficiency: An experimental approach to develop optimized ultra‐light UHPC hybrid beams , 2019, Structural Concrete.

[3]  Gerhard Weinrebe,et al.  Effizienter Stahlbau für solarthermische Kraftwerke , 2019 .

[4]  Peter Schwarzbözl,et al.  Progress in heliostat development , 2017 .

[5]  J. Schnell,et al.  Parabolschalen aus Hochleistungsbeton als Solarkollektoren , 2016 .

[6]  Peter Mark,et al.  Hybrid reinforcement design of longitudinal joints for segmental concrete linings , 2019 .

[7]  Chuncheng Zang,et al.  Fluctuating wind pressure characteristics of heliostats , 2013 .

[8]  M. A. Ahrens,et al.  Optimised High-Performance Concrete Shells for Parabolic Trough Collectors , 2017 .

[9]  M. Curbach,et al.  Zentrische Druckversuche an schlanken UHPC‐Stützen , 2016 .

[10]  M. A. Ahrens,et al.  Wind actions on large-aperture parabolic trough solar collectors: Wind tunnel tests and structural analysis , 2020 .

[11]  P. Mark,et al.  Thick slab punching with symmetry reductions , 2020, Structural Concrete.

[12]  Thomas Keck,et al.  Stellio - development, construction and testing of a smart heliostat , 2016 .

[13]  M. A. Ahrens,et al.  Light concrete shells for parabolic trough collectors – Conceptual design, prototype and proof of accuracy , 2015 .

[14]  J. Schnell,et al.  Konzeptionierung und Errichtung eines originalmaßstäblichen Parabolrinnenkollektors aus Hochleistungsbeton , 2019, Beton- und Stahlbetonbau.

[15]  Qiang Yao,et al.  A review of wind loads on heliostats and trough collectors , 2014 .

[16]  J A Peterka,et al.  Wind load design methods for ground-based heliostats and parabolic dish collectors , 1992 .